Skip to main content
Log in

Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Surface wettability of an implant material is an important criterion in biological response as it controls the adsorption of proteins followed by attachment of cells to its surface. Hence, micro-textured calcium phosphate coatings with four length scales were synthesized on Ti–6Al–4V substrates by a laser cladding technique and their effects on wettability and cell adhesion were systematically evaluated. Microstructure and morphological evolutions of the coatings were studied using scanning electron and light optical microscopes respectively. The surface texture of coating defined in terms of a texture parameter was correlated to its wetting behavior. The contact angle of simulated body fluid measured by a static sessile drop technique, demonstrated an increased hydrophilicity with decreasing value of texture parameter. The influence of such textures on the in vitro bioactivity and in vitro biocompatibility were studied by the immersion of the samples in simulated body fluid and mouse MC3T3-E1 osteoblast-like cell culture respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fisher JP. Tissue engineering. 1st ed. New York: Springer; 2006. p. 225.

    Google Scholar 

  2. Zhang ZY, Teoh SH, Chong WS, Foo TT, Chng YC, Choolani M, Chan J. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials. 2009;30:2694–704.

    Article  CAS  PubMed  Google Scholar 

  3. Quan R, Yang D, Yan J, Li W, Wu X, Wang H. Preparation of graded zirconia-CaP composite and studies of its effect on rat osteoblast cells in vitro. Mater Sci Eng C. 2009;29:253–60.

    Article  CAS  Google Scholar 

  4. Moreau JL, Xu HHK. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold. Biomaterials. 2009;30:2675–82.

    Article  CAS  PubMed  Google Scholar 

  5. Mei HH, Phillips GJ, Mikhalovsky SV, Lloyd AW. In vitro cytotoxicity assessment of carbon fabric coated with calcium phosphate. New Carbon Mater. 2008;23:139–43.

    Article  CAS  Google Scholar 

  6. Baker KC, Drelich J, Miskioglu I, Israel R, Herkowitz HN. Effect of polyethylene pretreatments on the biomimetic deposition and adhesion on calcium phosphate films. Acta Biomater. 2007;3:391–401.

    Article  CAS  PubMed  Google Scholar 

  7. Chou L, Marek B, Wagner WR. Effect of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials. 1999;20:977–85.

    Article  CAS  PubMed  Google Scholar 

  8. Alcaide M, Serrano MC, Pagani R, Salcedo SS, Regi VM, Portoles MT. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials. 2009;30:45–51.

    Article  CAS  PubMed  Google Scholar 

  9. Shih WJ, Wang SH, Li WL, Hon MH, Wang MC. The phase transition of calcium phosphate coatings deposited on a Ti–6Al–4V substrate by an electrolytic method. J Alloys Compd. 2007;434–435:693–6.

    Article  CAS  Google Scholar 

  10. Blalock T, Bai X, Rabiei A. A study on microstructure and properties of calcium phosphate coatings processed using ion beam assisted deposition on heated substrates. Surf Coat Technol. 2007;201:5850–8.

    Article  CAS  Google Scholar 

  11. Boyd AR, Meenan BJ, Leyland NS. Surface characterization of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution. Surf Coat Technol. 2006;200:6002–13.

    Article  CAS  Google Scholar 

  12. Wen HB, de Wijin JR, van Blitterswijk CA, de Groot K. Incorporation of bovine serum albumin in calcium phosphate coating on titanium. J Biomed Mater Res. 1999;46:245–52.

    Article  CAS  PubMed  Google Scholar 

  13. Ji H, Ponton CB, Marquis PM. Microstructural characterization of hydroxyapatite coating on titanium. J Mater Sci: Mater Med. 1992;3:283–7.

    Article  CAS  Google Scholar 

  14. Habibovic P, Barrère F, van Blitterswijk CA, de Groot K, Layrolle P. Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc. 2002;85:517–22.

    Article  CAS  Google Scholar 

  15. Ramires PA, Romito A, Cosentino F, Milella E. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behavior. Biomaterials. 2001;22:1467–74.

    Article  CAS  PubMed  Google Scholar 

  16. Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng: R: Rep. 2009;66:1–70.

    Article  CAS  Google Scholar 

  17. Campbell AA, Fryxell GE, Linehan JC, Graff GL. Surface-induced mineralization: a new method for producing calcium phosphate coatings. J Biomed Mater Res. 1996;32:111–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gracía-Sanz FJ, Mayor MB, Arias JL, Pou J, León B, Pérez-Amor M. Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques. J Mater Sci: Mater Med. 1997;8:861–5.

    Article  Google Scholar 

  19. Clèries L, Fernández-Pradas JM, Morenza JL. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition. J Biomed Mater Res. 2000;49:43–52.

    Article  PubMed  Google Scholar 

  20. Cheng GJ, Pirzada D, Cai M, Mohanty P, Bandyopadhyay A. Bioceramic coating of hydroxyapatite on titanium substrate with Nd:YAG laser. Mater Sci Eng C. 2005;25:541–7.

    Article  CAS  Google Scholar 

  21. Lusquiños F, Pou J, Arias JL, Boutinguiza M, Pérez-Amor M, León B, Driessens FCM. Production of calcium phosphate coatings on Ti6Al4V obtained by Nd:yttrium-aluminum-garnet laser cladding. J Appl Phys. 2001;90:4231–6.

    Article  ADS  CAS  Google Scholar 

  22. Lusquiños F, De Carlos A, Pou J, Arias JL, Boutinguiza M, León B, Pérez-Amor M, Driessens FCM, Hing K, Gibson I, Best S, Bonfield W. Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties. J Biomed Mater Res. 2003;64A:630–7.

    Article  CAS  Google Scholar 

  23. Wang D, Chen C, Ma J, Zhang G. In situ synthesis of hydroxyapatite coating by laser cladding. Colloids Surf B: Biointerfaces. 2008;66:155–62.

    Article  CAS  Google Scholar 

  24. Roy M, Krishna BV, Bandyopadhyay A, Bose S. Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomater. 2008;4:324–33.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Gao J, Tan J, Zou Z. Laser surface coating of a bioceramic composite layer. Surf Coat Technol. 1993;58:125–7.

    Article  CAS  Google Scholar 

  26. Kurella A, Dahotre NB. Laser induced hierarchical calcium phosphate structures. Acta Biomater. 2006;2:677–88.

    Article  PubMed  Google Scholar 

  27. Kurella A, Dahotre NB. A multi-textured calcium phosphate coating for hard tissue via laser surface engineering. J Miner, Met Mater Soc (JOM). 2006;58:64–6.

    CAS  Google Scholar 

  28. Paital SR, Dahotre NB. Laser surface treatment for porous and textured Ca–P bio-ceramic coating on Ti–6Al–4V. Biomed Mater. 2007;2:274–81.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Paital SR, Balani K, Agarwal A, Dahotre NB. Fabrication and evaluation of a pulse laser-induced Ca–P coating on a Ti alloy for bioapplication. Biomed Mater. 2009;4:1–10.

    Article  CAS  Google Scholar 

  30. Paital SR, Dahotre NB. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating. Acta Biomater. 2009;5:2763–72.

    Article  CAS  PubMed  Google Scholar 

  31. Palson BØ, Bhatia SN. Tissue engineering. 1st ed. New Jersey: Pearson Prentice Hall; 2004. p. 252–5.

    Google Scholar 

  32. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science. 1997;276:1425–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou XB, De Hosson JThM. Influence of surface roughness on the wetting angle. J Mater Res. 1995;10:1984–92.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. John Dunlop of University of Tennessee, Knoxville in helping us preparing the samples for SEM observations, Lu Huang for cell culture, and Dr. Peter Liaw of University of Tennessee, Knoxville in providing the cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra B. Dahotre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paital, S.R., He, W. & Dahotre, N.B. Laser pulse dependent micro textured calcium phosphate coatings for improved wettability and cell compatibility. J Mater Sci: Mater Med 21, 2187–2200 (2010). https://doi.org/10.1007/s10856-010-4085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4085-6

Keywords

Navigation