Skip to main content
Log in

Influence of unsaturated carbonic acids on hemocompatibility and cytotoxicity of poly-vinylacetate based co-polymers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate hemocompatibility and cytotoxicity properties of synthetic polymer coatings containing various unsaturated carbonic acids with vinylacetate. Co-polymers of vinylacetate and crotonic acid (CA), maleic acid (MA), and itaconic acid (IA) were made. The materials were characterized in terms of their adhesion to metal supports (titanium and stainless steel) as well as hemocompatibility (% hemolysis, wettability, erythrocyte aggregation, hemoglobin content, thrombocyte count and lipid peroxidation levels) and cytotoxicity (human endothelial cell activity in vitro and chromosome aberrations, bone marrow proliferation and cell ploidy in rats). Co-polymers of unsaturated carbonic acids with vinylacetate exhibited good hemocompatibility properties, as opposed to vinylacetate homopolymer for which substantial levels of hemolysis were observed. By coating the metal supports with co-polymers the cytotoxic effects associated with the bare metal samples were markedly reduced. MA samples showed excellent hemocompatibility and no cytotoxicity, yet they lacked good adhesion properties to metal substrate, probably due to high water content. CA samples, having the highest density of carboxylic groups among the samples under investigation, showed increased bone marrow proliferation activity and cell ploidy in rats, as compared to controls. The most promising results in the present study were obtained for the samples with IA, which showed good adhesion to metal substrates, good hemocompatibility and low cytotoxicity. Thus, co-polymers of vinylacetate and IA rich in carboxylic groups are promising materials for the design of novel drug-eluting stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lau KW, Mak KH, Hung JS, Sigwart U. Clinical impact of stent construction and design in percutaneous coronary intervention. Am Heart J. 2004;147(5):764–73.

    Article  PubMed  Google Scholar 

  2. Lev EI, Assali AR, Teplisky I, Rechavia E, Hasdai D, Sela O, et al. Comparison of outcomes up to six months of heparin-coated with noncoated stents after percutaneous coronary intervention for acute myocardial infarction. Am J Cardiol. 2004;93(6):741–3.

    Article  CAS  PubMed  Google Scholar 

  3. Lewis AL, Stratford PW. Phosphorylcholine-coated stents. J Long Term Eff Med Implants. 2002;12(4):231–50.

    CAS  PubMed  Google Scholar 

  4. Ramsdale DR. Coronary artery stenting. Hosp Med. 1999;60(9):624–9.

    CAS  PubMed  Google Scholar 

  5. Schuler G. Polymer-sirolimus-eluting stents in de novo lesions. Herz. 2004;29(2):152–61.

    Article  PubMed  MathSciNet  Google Scholar 

  6. Sigwart U. Coronary stents. Z Kardiol. 1995;84:65–77.

    PubMed  Google Scholar 

  7. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28(9):1689–710.

    Article  CAS  PubMed  Google Scholar 

  8. Taylor A. Metals. In: Sigwart U, editor. Endoluminal stenting. London: W.B. Saunders Company Ltd; 1996. p. 28–33.

    Google Scholar 

  9. Haudrechy P, Foussereau J, Mantout B, Baroux B. Nickel release from 304 and 316 stainless-steels in synthetic sweat—comparison with nickel and nickel-plated metals—consequences on allergic contact dermatitis. Corros Sci. 1993;35(1–4):329–36.

    Article  CAS  Google Scholar 

  10. Koster R, Vieluf D, Kiehn M, Sommerauer M, Kahler J, Baldus S, et al. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 2000;356(9245):1895–7.

    Google Scholar 

  11. Davis JR. Metallic materials. Materials Park, Ohio: ASM International; 2003.

    Google Scholar 

  12. Park JB, Kim YK. Metallic biomaterials. In: Park JB, Bronzio JD, editors. Biomat principles and applications. Boca Raton: CRC Press; 2003. p. 1–20.

    Google Scholar 

  13. Mueller PP, May T, Perz A, Hauser H, Peuster M. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials. 2006;27(10):2193–200.

    Article  CAS  PubMed  Google Scholar 

  14. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27(28):4955–62.

    Article  CAS  PubMed  Google Scholar 

  15. Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001;86(5):563–9.

    Article  CAS  PubMed  Google Scholar 

  16. Gottsauner-Wolf M, Moliterno DJ, Lincoff AM, Topol EJ. Restenosis—an open file. Clin Cardiol. 1996;19(5):347–56.

    Article  CAS  PubMed  Google Scholar 

  17. Wijns W. Late stent thrombosis after drug-eluting stent: seeing is understanding. Circulation. 2009;120(5):364–5.

    Article  PubMed  Google Scholar 

  18. Bailey SR. DES design: theoretical advantages and disadvantages of stent strut materials, design, thickness, and surface characteristics. J Interv Cardiol. 2009;22(s1):s3–17.

    Article  Google Scholar 

  19. Depalma VA, Baier RE, Gott VL, Ford JW, Furuse A. Investigation of 3-surface properties of several metals and their relation to blood compatibility. J Biomed Mater Res. 1972;6(4):37–75.

    Article  CAS  PubMed  Google Scholar 

  20. Dev V, Eigler N, Sheth S, Lambert T, Forrester J, Litvack F. Kinetics of drug delivery to the arterial wall via polyurethane-coated removable nitinol stent: comparative study of two drugs. Cathet Cardiovasc Diagn. 1995;34(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lambert TL, Dev V, Rechavia E, Forrester JS, Litvack F, Eigler NL. Localized arterial wall drug delivery from a polymer-coated removable metallic stent. Kinetics, distribution, and bioactivity of forskolin. Circulation. 1994;90(2):1003–11.

    CAS  PubMed  Google Scholar 

  22. Cooper SL, Visser SA, Hergenrother RW, Lamba NMK. Polymers. Biomaterials science an introduction to materials in medicine. San Diego: Elsevier Academic Press; 2004. p. 67–79.

    Google Scholar 

  23. Murphy JG, Schwartz RS, Edwards WD, Camrud AR, Vliestra RE, Holmer DR. Percutaneous polymeric stents in porcine coronary artery initial experience with polyethylene terephtalate stents. Circulation. 1992;86(5):1596–604.

    CAS  PubMed  Google Scholar 

  24. Peng T, Gibula P, Yao KD, Goosen MF. Role of polymers in improving the results of stenting in coronary arteries. Biomaterials. 1996;17(7):685–94.

    Article  CAS  PubMed  Google Scholar 

  25. Tan LP, Venkatraman SS, Sung PF, Wang XT. Effect of plasticization on heparin release from biodegradable matrices. Int J Pharm. 2004;283(1–2):89–96.

    Article  CAS  PubMed  Google Scholar 

  26. Banai S, Gertz SD, Gavish L, Chorny M, Perez LS, Lazarovichi G, et al. Tyrphostin AGL-2043 eluting stent reduces neointima formation in porcine coronary arteries. Cardiovasc Res. 2004;64(1):165–71.

    Article  CAS  PubMed  Google Scholar 

  27. van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HM, Serruys PW, Holmes DR Jr, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation. 1996;94(7):1690–7.

    PubMed  Google Scholar 

  28. Richard R, Schwarz M, Chan K, Teigen N, Boden M. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations. J Biomed Mater Res Part A. 2008;90A(2):522–32.

    Article  CAS  Google Scholar 

  29. Edelman ER, Adams DH, Karnovsky MJ. Effect of controlled adventitial heparin delivery on smooth muscle cell proliferation following endothelial injury. Proc Natl Acad Sci USA. 1990;87(10):3773–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Final Report on the Safety Assessment of Vinyl Acetate/Crotonic Acid Copolymer. Int J Tox 1983;2(5):125–40.

    Google Scholar 

  31. Kabanov VY. Preparation of polymeric biomaterials with the aid of radiation-chemical methods. Russ Chem Rev. 1998;67:783–816.

    Article  ADS  Google Scholar 

  32. Jozefowicz M, Jozefonvicz J. Antithrombogenic polymers. Pure Appl Chem. 1985;56(10):1335–44.

    Article  Google Scholar 

  33. Lundell EO, Byck JS, Kwiatkowski GT, Osterholts FD, Creasy WS, Stewart DD. Biological and physical characterization of some polyelectrolytes. Polym Prepr Am Chem Soc, Div Polym Chem. 1975;16(2):541–4.

    CAS  Google Scholar 

  34. Shtilman MI. Polymeric biomaterials. Part I. Polymer implants. Utrecht-Boston: VSP Books; 2003.

    Google Scholar 

Download references

Acknowledgements

International Science and Technology Center (ISTC) are gratefully acknowledged for financial support (grant A-1358 ISTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mihranyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakalyan, N.B., Karapetyan, A.G., Pogosyan, A.S. et al. Influence of unsaturated carbonic acids on hemocompatibility and cytotoxicity of poly-vinylacetate based co-polymers. J Mater Sci: Mater Med 21, 1693–1702 (2010). https://doi.org/10.1007/s10856-010-4020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4020-x

Keywords

Navigation