Skip to main content
Log in

Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled “designer” pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180–360 μm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (~4.5 μm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 μm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Padilla S, Sanchez-Salcedo S, Vallet-Regi M. Bioactive and biocompatible pieces of HA/sol-gel glass mixtures obtained by the gel-casting method. J Biomed Mater Res. 2005;75A:63–72.

    Article  CAS  Google Scholar 

  2. Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropresso S, Condo SG. Growth of osteoblast like cells on porous hydroxyapatite ceramics: an in vitro study. Biomol Eng. 2002;19:119–24.

    Article  CAS  PubMed  Google Scholar 

  3. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Komlev VS, Barinov SM. Porous hydroxyapatite ceramics of bi-modal pore size distribution. J Mater Sci Mater Med. 2002;13:295–9.

    Article  CAS  PubMed  Google Scholar 

  5. Jun IK, Song JH, Choi WY, Koh YH, Kim HE. Porous hydroxyapatite scaffolds coated with bioactive apatite-wollastonite glass-ceramics. J Am Ceram Soc. 2007;90:2703–8.

    Article  CAS  Google Scholar 

  6. Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release. J Mater Sci Mater Med. 2005;16:189–95.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang Y, Zhang M. Three dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load bearing bone implants. J Biomed Mater Res. 2002;61:1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang FZ, Kato K, Fuji M, Takahashi M. Gelcasting fabrication of porous ceramics using a continuous process. J Eur Ceram Soc. 2006;26:667–71.

    Article  CAS  Google Scholar 

  9. Sepulveda P. Gelcasting foams for porous ceramics. Am Ceram Soc Bull. 1997;76:61–5.

    CAS  Google Scholar 

  10. Yook SW, Kim HE, Yoon BH, Soon YM, Koh YH. Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Mater Lett. 2009;63:955–8.

    Article  CAS  Google Scholar 

  11. Lyckfeldt O, Ferreira JMP. Processing of porous ceramics by starch consolidation. J Eur Ceram Soc. 1998;18:131–40.

    Article  CAS  Google Scholar 

  12. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. Processing routes to macroporous ceramics: a review. J Am Ceram Soc. 2006;89:1771–89.

    Article  CAS  Google Scholar 

  13. Chu TMG, Halloran JW, Hollister SJ, Feinberg SE. Hydroxyapatite implants with designed internal architecture. J Mater Sci. 2001;12:471–8.

    CAS  Google Scholar 

  14. Sepulveda P, Binner JGP, Rogero SO, Higa OZ, Bressiani JC. Production of porous hydroxyapatite by the gel casting of foams and cytotoxic evaluation. J Biomed Mater Res. 2000;50:27–34.

    Article  CAS  PubMed  Google Scholar 

  15. Rehman H, Zhang M. Preparation of porous hydrxyapatite scaffolds by combination of the gel- casting and polymer sponge methods. Biomaterials. 2003;24:3293–302.

    Article  CAS  Google Scholar 

  16. Lee EJ, Koh YH, Yoon BH, Kim HE, Kim HW. Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater Lett. 2007;61:2270–3.

    Article  CAS  Google Scholar 

  17. Macchetta A, Turner IG, Bowen CR. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 2009;5:1319–27.

    Article  CAS  PubMed  Google Scholar 

  18. Chen R, Wang CA, Huang Y, Ma L, Lin W. Ceramics with special porous structures fabricated by freeze-gelcasting: using tert-butyl alcohol as a template. J Am Ceram Soc. 2007;90:3478–84.

    Article  CAS  Google Scholar 

  19. Chen R, Huang Y, Wang CA, Qi J. Ceramics with ultra-low density fabricated by gelcasting: an unconventional view. J Am Ceram Soc. 2007;90:3424–9.

    Article  CAS  Google Scholar 

  20. Pramanik S, Agarwal AK, Rai KN, Garg A. Development of high strength hydroxyapatite by solid- state-sintering process. Ceram Inter. 2007;33:419–26.

    Article  CAS  Google Scholar 

  21. Rodriguez-Lorenzo LM, Vallet-Regi M, Ferreira JMF. Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials. 2001;22:583–8.

    Article  CAS  PubMed  Google Scholar 

  22. Tampieri A, Gelotti G, Szontagh F, Landi F. Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity. J Mater Sci Mater Med. 1997;8:29–37.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou J, Zhang X, Chen J, De Zeng S, Groot K. High temperature characteristics of synthetic hydroxyapatite. J Mater Sci Mater Med. 1993;4:83–5.

    Article  CAS  Google Scholar 

  24. Kivrak N, Tas AC. Synthesis of calcium hydroxyapatite-tricalcium phosphate (HA-TCP) composite bioceramic powders and their sintering behavior. J Am Ceram Soc. 1998;81:2245–52.

    Article  CAS  Google Scholar 

  25. Lin FH, Liao CJ, Chen KS, Sun JS, Lin CP. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials. 2001;22:2981–92.

    Article  CAS  PubMed  Google Scholar 

  26. Fukasawa T, Ando M. Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J Am Ceram Soc. 2001;84:230–2.

    Article  CAS  Google Scholar 

  27. Yang S, Leong KF, Du Z, Chya CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-D00459). Also, this study (Dr. Yang) was financially supported by Pusan National University in the program, Post-Doc. 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chae Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T.Y., Lee, J.M., Yoon, S.Y. et al. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. J Mater Sci: Mater Med 21, 1495–1502 (2010). https://doi.org/10.1007/s10856-010-4000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4000-1

Keywords

Navigation