Skip to main content

Advertisement

Log in

3D environment on human mesenchymal stem cells differentiation for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work a novel method was developed to create a three dimensional environment at a cellular level for bone tissue engineering. Biphasic calcium phosphate (BCP) particles of 140–200 μm were used in association with human mesenchymal stem cells (hMSCs). The cells seeded on these particles adhered and proliferated more rapidly in the first day of culture compared to culture on plastic. Analyses of hMSCs cultured without osteogenic factors on BCP particles revealed an abundant extracellular matrix production forming 3-dimensional (3D) hMSCs/BCP particles constructs after few days. Bone morphogenetic 2 (BMP-2), bone sialoprotein (BSP) and ALP gene expression using real time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed that expression profiles were modified by the culture substrate while the addition of osteogenic medium enhanced bone markers expression. These results indicate that BCP particles alone are able to induce an osteoblastic differentiation of hMSCs that might be of interest for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burchardt H. Biology of bone transplantation. Orthop Clin North Am. 1987;18:187.

    CAS  PubMed  Google Scholar 

  2. Fischer EM, Layrolle P, Van Blitterswijk CA, De Bruijn JD. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng. 2003;9:1179.

    Article  CAS  PubMed  Google Scholar 

  3. Kruyt MC, Dhert WJ, Yuan H, Wilson CE, van Blitterswijk CA, Verbout AJ, et al. Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. J Orthop Res. 2004;22:544.

    Article  CAS  PubMed  Google Scholar 

  4. Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotechnol Bioeng. 2001;72:96.

    Article  CAS  PubMed  Google Scholar 

  5. Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol. 1974;2:83.

    CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71.

    Article  CAS  PubMed  Google Scholar 

  8. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH and Kadiyala S. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res. 1998;S247.

  9. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49:328.

    Article  CAS  PubMed  Google Scholar 

  10. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, et al. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18:959.

    Article  CAS  PubMed  Google Scholar 

  11. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402.

    Article  CAS  PubMed  Google Scholar 

  12. Cooper LF, Harris CT, Bruder SP, Kowalski R, Kadiyala S. Incipient analysis of mesenchymal stem-cell-derived osteogenesis. J Dent Res. 2001;80:314.

    Article  CAS  PubMed  Google Scholar 

  13. Dennis JE, Haynesworth SE, Young RG, Caplan AI. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant. 1992;1:23.

    CAS  PubMed  Google Scholar 

  14. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem. 1999;75:424.

    Article  CAS  PubMed  Google Scholar 

  15. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13:81.

    Article  CAS  PubMed  Google Scholar 

  16. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res. 1997;12:1335.

    Article  CAS  PubMed  Google Scholar 

  17. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20:263.

    CAS  PubMed  Google Scholar 

  18. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641.

    Article  CAS  PubMed  Google Scholar 

  19. de Bruijn JD, Van den Brink I, Mendes S, Bovell YP, van Blitterswijk CA. Bone induction by implants coated with cultured osteogenic bone marrow cells. Adv Dent Res. 1999;13:74.

    Article  PubMed  Google Scholar 

  20. Maegawa N, Kawamura K, Hirose M, Yajima H, Takakura Y, Ohgushi H. Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med. 2007;1:306.

    Article  CAS  PubMed  Google Scholar 

  21. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 1988;254:317.

    Article  CAS  PubMed  Google Scholar 

  22. Lorch IJ. Alkaline phosphatase and the mechanism of ossification. J Bone Joint Surg Am. 1949;31B:94.

    CAS  PubMed  Google Scholar 

  23. Kaysinger KK, Ramp WK. Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem. 1998;68:83.

    Article  CAS  PubMed  Google Scholar 

  24. Di Silvio L, Gurav N, Sambrook R. The fundamentals of tissue engineering: new scaffolds. Med J Malays. 2004;59(Suppl B):89.

    PubMed  Google Scholar 

  25. Saldana L, Sanchez-Salcedo S, Izquierdo-Barba I, Bensiamar F, Munuera L, Vallet-Regi M, et al. Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells. Acta Biomater. 2009;5:1294.

    Article  CAS  PubMed  Google Scholar 

  26. Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA. 1993;90:8562.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Hunter GK, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J 1994;302(Pt 1):175.

    CAS  PubMed  Google Scholar 

  28. Frank O, Heim M, Jakob M, Barbero A, Schafer D, Bendik I, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem. 2002;85:737.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported financially by both the Inserm National Program for Research in Osteoarticular diseases (PRO-A) and the National Research Agency (ANR TecSan) through the ATOS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cordonnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordonnier, T., Layrolle, P., Gaillard, J. et al. 3D environment on human mesenchymal stem cells differentiation for bone tissue engineering. J Mater Sci: Mater Med 21, 981–987 (2010). https://doi.org/10.1007/s10856-009-3916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3916-9

Keywords

Navigation