Skip to main content

Advertisement

Log in

Nanostructural analysis of trabecular bone

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanical properties of bone are dictated by the size, shape and organization of the mineral and matrix phases at multiple levels of hierarchy. While much is known about structure–function relations at the macroscopic level, less is known at the nanoscale, especially for trabecular bone. In this study, high resolution transmission electron microscopy (HRTEM) was carried out to analyze shape and orientation of apatite crystals in murine femoral trabecular bone. The distribution and orientation of mineral apatites in trabecular bone were different from lamellar bone and the c-axis of the tablet-like mineral apatite crystals in trabecular bone was arranged with no preferred orientation. The difference in the orientation distribution of apatite crystals of trabecular bone in the present study compared with that of lamellar bone found in the literature can be attributed to the more complex local stress state in trabecular bone. Apatite crystals were also found to be multi-crystalline, not single crystalline, from dark field image analysis. From the observations of this study, it is suggested that Wolff’s law can be applicable to the nanostructural orientation and distribution of apatite crystals in trabecular bone. It was also found that small round crystalline particles observed adjacent to collagen fibrils were similar in size and shape to the apatite crystals in biomimetically nucleated synthetic amorphous calcium phosphate, which suggests that they are bone mineral apatite nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hancox NM. Biology of bone. Cambridge: Cambridge University Press; 1972. p. 3–48.

    Google Scholar 

  2. Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic interaction in normally calcifying tendon visualized in three dimensions by high voltage electron microscopic tomography and graphic imaging reconstruction. J Struct Biol. 1993;110:39–54. doi:10.1006/jsbi.1993.1003.

    Article  PubMed  CAS  Google Scholar 

  3. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchial structure of bone. Med Eng Phys. 1998;20:92–102.

    Article  PubMed  CAS  Google Scholar 

  4. Su X, Sun K, Cui FZ, Landis WJ. Organization of apatite crystals in human woven bone. Bone. 2003;32:150–62.

    Article  PubMed  CAS  Google Scholar 

  5. Rohanizadeh R, LeGeros RZ, Bohie S, Pilet P, Barbier A, Daculsi G. Ultrastructural properties of bone mineral of control and tiludronate-treated osteoporotic rat. Calcif Tissue Int. 2000;67:330–6. doi:10.1007/s002230001141.

    Article  PubMed  CAS  Google Scholar 

  6. Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian RP. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone. 2003;33:270–82. doi:10.1016/S8756-3282(03)00194-7.

    Article  PubMed  Google Scholar 

  7. Martin RB, Burr DB, Sharkey NA. Skeletal tissue mechanics. New York: Springer; 1998. p. 227–30.

    Google Scholar 

  8. Rindby A, Voglis P, Engstrom P. Microdiffraction studies of bone tissues using synchrotron radiation. Biomaterials. 1998;19:2083–92. doi:10.1016/S0142-9612(98)00120-3.

    Article  PubMed  CAS  Google Scholar 

  9. Chen QZ, Wong CT, Lu WW, Cheung KMC, Leong JCY, Luk KDK. Strengthening mechanism of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials. 2004;25:4234–54. doi:10.1016/j.biomaterials.2003.11.017.

    Google Scholar 

  10. Hohling HJ. Collagen mineralization in bone, dentine, cementum and cartilage. Naturwissenschaften. 1969;56:466–76. doi:10.1007/BF00601080.

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98. doi:10.1146/annurev.matsci.28.1.271.

    Article  CAS  Google Scholar 

  12. Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995;16:533–44. doi:10.1016/8756-3282(95)00076-P.

    Article  PubMed  CAS  Google Scholar 

  13. Sahar ND, Hong SI, Kohn DH. Micro- and nano-structural analyses in bone. Micron. 2005;36:617–29. doi:10.1016/j.micron.2005.07.006.

    Article  PubMed  Google Scholar 

  14. Khan K, McKay H, Kannus P, Bailey D, Wark J, Bennel K. Physical activity and bone health. Champaign: Human Kinetics; 2001. p. 16.

    Google Scholar 

  15. Jena AK, Chaturvedi MC. Phase transformation in materials. Englewood Cliffs: Prentice Hall; 1992. p. 151, 302.

  16. Hong SI, Gray GT, Wang Z. Microstructure and stress-strain response of Al-Mg-Si alloy composites reinforced with 15% Al2O3. Mater Sci Eng. 1996;221:38–47. doi:10.1016/S0921-5093(96)10483-4.

    Article  Google Scholar 

  17. Hong SI, Lee KH, Outslay M, Kohn DH. Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template. J Mater Res. 2008;23:478–85. doi:10.1557/jmr.2008.0051.

    Article  ADS  CAS  Google Scholar 

  18. Sasaki N, Sudoh Y. X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int. 1997;60:361–7. doi:10.1007/s002239900244.

    Article  PubMed  CAS  Google Scholar 

  19. Luong LN, Hong SI, Patel RJ, Outslay ME, Kohn DH. Spatial control of protein within biomimetically nucleated mineral. Biomaterials. 2006;27:1175–84. doi:10.1016/j.biomaterials.2005.07.043.

    Article  PubMed  CAS  Google Scholar 

  20. Cuisinier FJG, Steuer P, Brisson A, Voegel JC. High resolution electron microscopy of crystal growth mechanisms in chicken bone composites. J Cryst Growth. 1995;156:443–53. doi:10.1016/0022-0248(95)00237-5.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the support from US DoD/Dept. of the Army DAMD17-03-1-0556. SIH is grateful for the support from Korea Research Foundation (D00318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Ig Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.I., Hong, S.K. & Kohn, D.H. Nanostructural analysis of trabecular bone. J Mater Sci: Mater Med 20, 1419–1426 (2009). https://doi.org/10.1007/s10856-009-3708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3708-2

Keywords

Navigation