Skip to main content

Advertisement

Log in

Preparation of porous 45S5 Bioglass®-derived glass–ceramic scaffolds by using rice husk as a porogen additive

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glass is currently regarded as the most biocompatible material in the bone regeneration field because of its bioactivity, osteoconductivity and even osteoinductivity. In the present work porous glass–ceramic scaffolds, which were prepared from the 45S5 Bioglass® by foaming with rice husks and sintering at 1050°C for 1 h, have been developed. The produced scaffolds were characterized for their morphology, properties and bioactivity. Micrographs taken using a scanning electron microscope (SEM) were used for analysis of macropores, mesopores and micropores, respectively. The bioactivity of the porous glass–ceramic scaffolds was investigated using simulated body fluid (SBF) and characterized by SEM, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). A great potential scaffold that provides sufficient mechanical support temporarily while maintaining bioactivity, and that can biodegrade at later stages is achievable with the developed 45S5 Bioglass®-derived scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.L. Hench, J.M. Polak, Science 295, 1014 (2002). doi:10.1126/science.1067404

    Article  PubMed  ADS  CAS  Google Scholar 

  2. S.P. Bruder, in Caplan AI in Principles of Tissue Engineering, 2nd edn., ed. by R.P. Lanza, R. Langer, J. Vacanti (Academic Press, California, 2000), pp. 683–696

    Google Scholar 

  3. N. Okii, S. Nishimura, K. Kurisu, Y. Takeshima, T. Uozumi, Neur. Med. Chir. 41(2), 100 (2001). doi:10.2176/nmc.41.100

    Article  CAS  Google Scholar 

  4. T.M. Freyman, I.V. Yannas, L.J. Gibson, Prog. Mater. Sci. 46, 273 (2001). doi:10.1016/S0079-6425(00)00018-9

    Article  CAS  Google Scholar 

  5. E. Jabbarzadeh, T. Jiang, M. Deng, L.S. Nair, Y.M. Khan, C.T. Laurencin, Biotechnol. Bioeng. 98, 1094 (2007). doi:10.1002/bit.21495

    Article  PubMed  CAS  Google Scholar 

  6. M.M.C.G. Silva, L.A. Cyster, J.J.A. Barry, X.B. Yang, R.O.C. Oreffo, D.M. Grant, C.A. Scotchford, S.M. Howdle, K.M. Shakesheff, F.R.A.J. Rose, Biomaterials 27, 5909 (2006). doi:10.1016/j.biomaterials.2006.08.010

    Article  PubMed  CAS  Google Scholar 

  7. C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso, G. Muzio, R. Canuto, Acta Biomater. 3, 199 (2007). doi:10.1016/j.actbio.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  8. H.R. Ramay, M.Q. Zhang, Biomaterials 24, 3293 (2003). doi:10.1016/S0142-9612(03)00171-6

    Article  PubMed  CAS  Google Scholar 

  9. S. Sánchez-Salcedo, A. Nieto, M. Vallet-Regí, Chem. Eng. J. 137, 62 (2008). doi:10.1016/j.cej.2007.09.011

    Article  Google Scholar 

  10. D. Tadic, F. Beckmann, K. Schwarz, M. Epple, Biomaterials 25, 3335 (2004). doi:10.1016/j.biomaterials.2003.10.007

    Article  PubMed  CAS  Google Scholar 

  11. M. Shin, H. Abukawa, M.J. Troulis, J.P. Vacanti, J. Biomed. Mater. Res. 84A, 702 (2008). doi:10.1002/jbm.a.31392

    Article  CAS  Google Scholar 

  12. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817 (2005). doi:10.1016/j.biomaterials.2004.11.057

    Article  PubMed  CAS  Google Scholar 

  13. J. Wilson, G.H. Pigot, F.J. Schoen, L.L. Hench, J. Biomed. Mater. Res. 15, 805 (1981). doi:10.1002/jbm.820150605

    Article  PubMed  CAS  Google Scholar 

  14. H. Oonishi, S. Kutrshitani, E. Yasukawa, H. Iwaki, L.L. Hench, J. Wilson, E. Tsuji, T. Sugihara, Clin. Orthop. Relat. Res. 334, 316 (1997). doi:10.1097/00003086-199701000-00041

    Article  PubMed  Google Scholar 

  15. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. 5, 117 (1971). doi:10.1002/jbm.820050611

    Article  Google Scholar 

  16. L.L. Hench, H.A. Paschall, J. Biomed. Mater. Res. 7, 25 (1973). doi:10.1002/jbm.820070304

    Article  PubMed  CAS  Google Scholar 

  17. L.L. Hench, H.A. Paschall, J. Biomed. Mater. Res. 8, 49 (1974). doi:10.1002/jbm.820080307

    Article  PubMed  CAS  Google Scholar 

  18. A.M. Gatti, G. Valdre, O.H. Andersson, Biomaterials 15, 208 (1994). doi:10.1016/0142-9612(94)90069-8

    Article  PubMed  CAS  Google Scholar 

  19. A.E. Clark, L.L. Hench, J. Biomed. Mater. Res. 28, 693 (1994). doi:10.1002/jbm.820280606

    Article  PubMed  Google Scholar 

  20. L.L. Hench, Curr. Opin. Solid State Mater. Sci. 2, 604 (1997). doi:10.1016/S1359-0286(97)80053-8

    Article  CAS  Google Scholar 

  21. L.L. Hench, J. Wilson, Science 226, 630 (1984). doi:10.1126/science.6093253

    Article  PubMed  ADS  CAS  Google Scholar 

  22. J.R. Jones, L.L. Hench, Curr. Opin. Solid State Mater. Sci. 7, 301 (2003). doi:10.1016/j.cossms.2003.09.012

    Article  CAS  Google Scholar 

  23. A.R. Boccaccini, J. Mater. Sci. Mater. Med. 14, 350 (2003). doi:10.1023/A:1023266902662

    Article  Google Scholar 

  24. K. Ohura, T. Nakamura, T. Yamamuro, Y. Ebisawa, T. Kokubo, Y. Kotoura, M. Oka, J. Mater. Sci. Mater. Med. 3, 95 (1992). doi:10.1007/BF00705275

    Article  CAS  Google Scholar 

  25. J.E. Davies, N. Baldan, J. Biomed. Mater. Res. 36, 429 (1997). doi:10.1002/(SICI)1097-4636(19970915)36:4<429::AID-JBM1>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  26. Q.Z. Chen, K. Rezwan, V. Françon, D. Armitage, S.N. Nazhat, F.H. Jones, A.R. Boccaccini, Acta Biomater. 3, 551 (2007). doi:10.1016/j.actbio.2007.01.008

    Article  PubMed  CAS  Google Scholar 

  27. J.R. Jones, L.L. Hench, J. Biomed. Mater. Res. 68B, 36 (2004). doi:10.1002/jbm.b.10071

    Article  CAS  Google Scholar 

  28. A.R. Boccaccini, Q.Z. Chen, L. Lefebvre, L. Gremillard, J. Chevalier, Farad. Dis. 136, 27 (2007). doi:10.1039/b616539g

    Article  CAS  Google Scholar 

  29. L.L. Hench, J. Am. Ceram. Soc. 81(7), 1705 (1998)

    CAS  Google Scholar 

  30. N.K. Sharma, W.S. Williams, A. Zangvil, J. Am. Ceram. Soc. 67, 715 (1984). doi:10.1111/j.1151-2916.1984.tb19507.x

    Article  CAS  Google Scholar 

  31. S. Chandrasekhar, K.G. Satyanarayana, P.N. Pramada, P. Raghavan, T.N. Gupta, J. Mater. Sci. 38, 3159 (2003). doi:10.1023/A:1025157114800

    Article  CAS  Google Scholar 

  32. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, N. Nakamura, T. Yamamuro, J. Mater. Sci. Mater. Med. 4, 127 (1993). doi:10.1007/BF00120381

    Article  CAS  Google Scholar 

  33. O.P. Filho, G.P. LaTorre, L.L. Hench, J. Biomed. Mater. Res. 30, 509 (1996). doi:10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T

    Article  Google Scholar 

  34. D.C. Clupper, J.J. Mecholsky Jr, G.P. LaTorre, D.C. Greenspan, J. Biomed. Mater. Res. 57, 532 (2001). doi:10.1002/1097-4636(20011215)57:4<532::AID-JBM1199>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  35. D.C. Clupper, J.J. Mecholsky Jr, G.P. LaTorre, D.C. Greenspan, Biomaterials 23, 2599 (2002). doi:10.1016/S0142-9612(01)00398-2

    Article  PubMed  CAS  Google Scholar 

  36. Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials 27, 2414 (2006). doi:10.1016/j.biomaterials.2005.11.025

    Article  PubMed  CAS  Google Scholar 

  37. D.C. Clupper, L.L. Hench, J. Non-Crys, Solid 318, 43 (2003)

    CAS  Google Scholar 

  38. G. Daculsi, R.Z. LeGeros, M. Heughebaert, Calcif. Tissue Int. 46, 20 (1990). doi:10.1007/BF02555820

    Article  PubMed  CAS  Google Scholar 

  39. T. Lin, C. Su, C. Chang, J. Biomed. Mater. Res. 36, 91 (1997). doi:10.1002/(SICI)1097-4636(199707)36:1<91::AID-JBM11>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  40. N. Kawai, S. Niwa, M. Sato, Y. Sato, Y. Suwa, I. Ichihara, J. Biomed. Mater. Res. 37, 1 (1997). doi:10.1002/(SICI)1097-4636(199710)37:1<1::AID-JBM1>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  41. J.D. Currey, Clin. Orthop. Relat. Res. 73, 210 (1970). doi:10.1097/00003086-197011000-00023

    Article  Google Scholar 

  42. K.A. Hing, S.M. Best, W. Bonfield, J. Mater. Sci. Mater. Med. 10, 135 (1999). doi:10.1023/A:1008929305897

    Article  PubMed  CAS  Google Scholar 

  43. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Biomaterials 27, 964 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  44. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn (Pergamon, Oxford, 1999), pp. 117–118, 209–212

  45. C.H. Turner, in Burr DB in Bone Mechanics, ed. by S.C. Cowin (CRC Press, Boca Raton, 1989), pp. 1–11

    Google Scholar 

  46. N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi, J. Biomed. Mater. Res. 59, 110 (2002). doi:10.1002/jbm.1222

    Article  PubMed  CAS  Google Scholar 

  47. D.R. Carter, W.C. Hayes, Science 194, 1174 (1976). doi:10.1126/science.996549

    Article  PubMed  ADS  CAS  Google Scholar 

  48. O. Peitl, E.D. Zanotto, L.L. Hench, J. Non-Crys, Solid 292, 115 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fu Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, SC., Hsu, HC., Hsiao, SH. et al. Preparation of porous 45S5 Bioglass®-derived glass–ceramic scaffolds by using rice husk as a porogen additive. J Mater Sci: Mater Med 20, 1229–1236 (2009). https://doi.org/10.1007/s10856-009-3690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3690-8

Keywords

Navigation