Skip to main content
Log in

Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chitosan, a natural polycationic polysaccharide, was coupled with two polyanionic polymers: Na-alginate and carboxymethylcellulose (CMC) and with tannic acid (TA) obtaining three species of self-assembled complexes: chitosan/alginate/TA (sample 1), chitosan/TA (sample 2) and chitosan/CMC/TA (sample 3). The microparticle formation was achieved by dropwise addition of one solution into other by using a coaxial airflow sprayer. These systems were characterized with regard to particle size distribution, thermal stability, tannic acid entrapment efficiency. Sample 2 showed quite a different behavior compared to the other two samples; the particle diameter is located in the nanometric region, the quantity of incorporated tannic acid is higher than in the other two samples and the material shows better thermal stability. The release of tannic acid from these complexes was studied in water (pH = 5.89), phosphates buffer (pH = 7.04) and acetate buffer (pH = 4.11). These studies revealed two distinct periods in tannic acid delivery process: an initial period, varying between 4 and 10 h, characterized by a high release rate with a delivered tannic acid amount of approximately 80% of the incorporated polyphenol and a second period, which starts after 20 to 30 h of delivery and it ends after approximately 120 h, when the release process takes place with low and constant rate and the kinetic curve is linear—characteristic for a zero order kinetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.T. Chung, T.Y. Wong, C.I. Wei, Y.W. Huang, Y. Lin, Crit. Rev. Food Sci. Nutr. 38(6), 421 (1998). doi:10.1080/10408699891274273

    Article  PubMed  CAS  Google Scholar 

  2. C. Nepka, E. Asprodini, D. Kouretas, Eur. J. Drug Metab. Pharmacokinet. 24, 183 (1999)

    PubMed  CAS  Google Scholar 

  3. H.U. Gali-Muhtasib, S.Z. Yamout, M.M. Sidani, Nutr. Cancer 37, 73 (2000). doi:10.1207/S15327914NC3701_9

    Article  PubMed  CAS  Google Scholar 

  4. C. Nepka, E. Sivridis, O. Antonoglou, A. Kortsaris, A. Georgellis, I. Taitzoglou, P. Hytiroglou, C. Papadimitriou, Kouretas.D. Zintzaras, Cancer Lett. 14, 57 (1999). doi:10.1016/S0304-3835(99)00145-7

    Article  Google Scholar 

  5. N. Sangkil, D.M. Smith, Q. Ping Dou, Cancer Epidemiol. Biomarkers Prev. 10, 1083 (2001)

    Google Scholar 

  6. J.W. Dollahite, R.F. Pigeon, B.J. Camp, Am. J. Vet. Res. 23, 1264 (1962)

    PubMed  CAS  Google Scholar 

  7. S. Dumitriu, E. Chornet, Adv. Drug Deliv. Rev. 31, 223 (1998). doi:10.1016/S0169-409X(97)00120-8

    Article  PubMed  CAS  Google Scholar 

  8. O. Gaserod, O. Smidsrod, G. Skjak-Brek, Biomaterials 19, 1815 (1998). doi:10.1016/S0142-9612(98)00073-8

    Article  PubMed  CAS  Google Scholar 

  9. O. Gaserod, A. Sannes, G. Skjak-Brek, Biomaterials 20, 773 (1999). doi:10.1016/S0142-9612(98)00230-0

    Article  PubMed  CAS  Google Scholar 

  10. M.G. Sankalia, R.C. Mashru, J. Sankalia, V.B. Mand Sutariya, Eur. J. Pharm. Biopharm. 65, 215 (2007). doi:10.1016/j.ejpb.2006.07.014

    Article  PubMed  CAS  Google Scholar 

  11. S. Ichikawa, S. Iwamoto, Watanabe, Biosci. Biotechnol. Biochem. 69, 1637 (2005). doi:10.1271/bbb.69.1637

    Article  PubMed  CAS  Google Scholar 

  12. T. Yoshioka, R. Hirano, T. Shioya, M. Kako, Biotechnol. Bioeng. 35, 35 (1990). doi:10.1002/bit.260350110

    Article  Google Scholar 

  13. T. Peng, K.D. Yao, Z. Chen, M.F. Goosen, J. Polym. Sci. Polym. Chem. Ed. 32, 591 (1994). doi:10.1002/pola.1994.080320322

    Article  CAS  Google Scholar 

  14. T. Sannan, K. Kurita, K. Ogura, Y. Iwakura, Polymer 18, 458 (1978). doi:10.1016/0032-3861(78)90256-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CEEX 108/2006 project. The thermal analysis was carried out on a Mettler Toledo derivatograph within the Platform “High performance multi-functional polymeric materials for medicine, pharmacy, micro-electronics, energy/information storing, and environment protection” funded by CNCSIS through project no. 69/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neculai Aelenei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aelenei, N., Popa, M.I., Novac, O. et al. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J Mater Sci: Mater Med 20, 1095–1102 (2009). https://doi.org/10.1007/s10856-008-3675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3675-z

Keywords

Navigation