Skip to main content

Advertisement

Log in

Novel electrohydrodynamic preparation of porous chitosan particles for drug delivery

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Uniform spherical chitosan particles of size <10 μm in diameter are important in drug delivery applications due to their excellent biocompability and biodegradability. A high concentration of chitosan in the particles can help to control the release of drugs and methods for processing high viscosity chitosan solutions are therefore required. In principle, any type of polymer, whether hydrophobic or hydrophilic, can be electrosprayed to obtain monodisperse particles of diameter <10 μm. In practice, however, electrospraying of biopolymers having viscosities of >100 mPa s results in particles >10 μm diameter. In this study, by reducing surface tension of a high viscosity chitosan suspension, it was found that smaller diameter particles could be prepared. Chitosan solutions were electrosprayed in the stable cone-jet mode to systematically study the relationship between particle diameter, viscosity and surface tension. Increasing viscosity resulted in larger diameter particles with a broad size distribution, but decreasing surface tension had the opposite effect. Results show that a chitosan solution having a viscosity of ~80 mPa s can be used to prepare chitosan particles of diameter ~2.5 μm which on drying reduced to particles of 500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.R. Sinha, A. Trehan, Biodegradable microspheres for protein delivery. J. Control. Release 90(3), 261–280 (2003). doi:10.1016/S0168-3659(03)00194-9

    Article  PubMed  CAS  Google Scholar 

  2. F. Bugamelli, M.A. Raggi, I. Orienti, V. Zecchi, Controlled insulin release from chitosan microparticles. Arch. Pharm. 331(4), 138 (1998). doi:10.1002/(SICI)1521-4184(199804)331:4<133::AID-ARDP133>3.0.CO;2-H

    Article  Google Scholar 

  3. X. Fu, L. Huang, M. Zhai, W. Li, H. Liu, Analysis of natural carbohydrate biopolymer-high molecular chitosan and carboxymethyl chitosan by capillary zone electrophoresis. Carbohydr. Polym. 68(3), 511–516 (2007). doi:10.1016/j.carbpol.2006.11.001

    Article  CAS  Google Scholar 

  4. M.V. Risbud, R.R. Bhonde, Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug. Deliv. 7(2), 69–75 (2000). doi:10.1080/107175400266623

    Article  PubMed  CAS  Google Scholar 

  5. C.M. Lehr, J.A. Boustra, E.H. Schacht, H.E. Junginger, In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 78(1), 43–48 (1992). doi:10.1016/0378-5173(92)90353-4

    Article  CAS  Google Scholar 

  6. W. Paul, C.P. Sharma, Chitosan, a drug carrier for the 21st century: a review. S.T.P. Pharma. Sci. 10, 5–22 (2000)

    CAS  Google Scholar 

  7. Y.B. Choy, H. Choi, K. Kim, Uniform biodegradable hydrogel microspheres fabricated by a surfactant-free electric-field-assisted method. Macromol. Biosci. 7(4), 423–428 (2007). doi:10.1002/mabi.200700020

    Article  PubMed  CAS  Google Scholar 

  8. Y. Ohya, M. Shiratani, H. Kobayashi, T. Ouchi, Release behaviour of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J.M.S. Pure. Appl. Chem. Part A 31, 629–642 (1994)

    Google Scholar 

  9. G. Boehm, M. Peyre, H. Sesardic, R.J. Huskisson, F. Mawas, A. Douglas, D. Xing, H.P. Merkle, B. Gander, P. Johansen, On technological and immunological benefits of multivalent single-injection microsphere vaccines. Pharm. Res. 19(9), 1330–1336 (2002). doi:10.1023/A:1020354809581

    Article  PubMed  CAS  Google Scholar 

  10. I. Genta, P. Perugini, B. Conti, F. Parranetto, A multiple emulsion method to entrap a lipophilic compound into chitosan microspheres. Int. J. Pharm. 152(2), 237–246 (1997). doi:10.1016/S0378-5173(97)00096-3

    Article  CAS  Google Scholar 

  11. E.B. Denkbas, R.M. Ottenbrite, Perspective on: chitosan drug delivery systems based on their geometries. J. Bioact. Compat. Polym. 21(4), 351–368 (2006). doi:10.1177/0883911506066930

    Article  CAS  Google Scholar 

  12. P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, Novel hydrophilic chitosan-poly ethylene oxide nano-particles as protein carriers. J. Appl. Polym. Sci. 63(1), 125–132 (1997). doi:10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4

    Article  CAS  Google Scholar 

  13. S.W. Li, S.N. Jayasinghe, M.J. Edirisinghe, Aspirin particle formation by electric-field-assisted release of droplets. Chem. Eng. Sci. 61(10), 3091–3097 (2006). doi:10.1016/j.ces.2005.08.004

    Article  CAS  Google Scholar 

  14. S.N. Jayasinghe, M.J. Edirisinghe, Effect of size of relics produced by electrostatic atomisation. J. Aerosol Sci. 33(10), 1379–1388 (2002). doi:10.1016/S0021-8502(02)00088-5

    Article  CAS  Google Scholar 

  15. R.E. Eliaz, J. Kost, Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J. Biomed. Mater. Res. A 50(3), 388–396 (2000). doi:10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13>3.0.CO;2-F

    Article  CAS  Google Scholar 

  16. A. Jaworek, A. Krupa, Classification of the modes of EHD spraying. J. Aerosol Sci. 30(7), 873–893 (1999). doi:10.1016/S0021-8502(98)00787-3

    Article  CAS  Google Scholar 

  17. F. Li, X.Y. Yin, X.Z. Yin, Linear instability of a co-flowing jet under an axial electric field. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys. 74(3), 036304–036307 (2006). doi:10.1103/PhysRevE.74.036304

    PubMed  ADS  Google Scholar 

  18. T.M. Squire, S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977–1026 (2005)

    Article  ADS  Google Scholar 

  19. Y. Christanti, L.M. Walker, Effect of fluid relaxation time on jet breakup due to a forced disturbance of polymer solutions. J. Rheol. (NYNY) 46(3), 733–748 (2002). doi:10.1122/1.1463418

    Article  CAS  Google Scholar 

  20. K.P. Pancholi, E. Stride, M. Edirisinghe, Generation of microbubbles for diagnostic and therapeutic applications using a novel device. J. Drug Target. 16(6), 494–501 (2008). doi:10.1080/10611860802184884

    Article  PubMed  CAS  Google Scholar 

  21. S.N. Jayasinghe, M.J. Edirisinghe, Electrostatic atomisation of a ceramic suspension. J. Eur. Ceram. Soc. 24(8), 2203–2213 (2004). doi:10.1016/j.jeurceramsoc.2003.07.001

    Article  CAS  Google Scholar 

  22. H.B. Zhang, M.J. Edirisinghe, S.N. Jayasinghe, Flow behaviour of dielectric liquids in an electric field. J. Fluid Mech. 558, 103–111 (2006). doi:10.1017/S0022112006000188

    Article  MATH  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank EPSRC for supporting this work under platform grant EP/E045839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Edirisinghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pancholi, K., Ahras, N., Stride, E. et al. Novel electrohydrodynamic preparation of porous chitosan particles for drug delivery. J Mater Sci: Mater Med 20, 917–923 (2009). https://doi.org/10.1007/s10856-008-3638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3638-4

Keywords

Navigation