Skip to main content

Advertisement

Log in

Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Three-dimensional macroporous scaffolds with the pore size of 200–500 μm were fabricated by replication method using bioactive borosilicate glass from Na2O–K2O–MgO–CaO–SiO2–P2O5–B2O3 system. The effects of the strength of the strut in reticulated scaffold, as well as the geometrical parameter of the scaffold on the strength of reticulated scaffold were investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the solidified glass struts in the reticulated scaffold could be obtained through a sufficient vicious flow of glass, during the fabrication. By increasing the solid content in slurries, from which the scaffold was made, the load-bearing units of the reticulated scaffold switch from struts to the walls between the pores, and the compressive strength dramatically climbs higher than the theoretical strength calculated by Gibson model. In particular, the compressive strength of the reticulated scaffold, as high as ~10 MPa with the porosity of ~70%, is close to the reported compressive values of human cancellous bone. This indicates the bioactive borosilicate glass-based scaffold is a promising candidate for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.W. Hutmacher, Biomaterials 21, 2529 (2000). doi:10.1016/S0142-9612(00)00121-6

    Article  PubMed  CAS  Google Scholar 

  2. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Biomaterials 27, 964 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  3. W. Liang, M.N. Rahaman, D.E. Day, N.W. Marion, G.C. Riley, J.J. Mao, J. Non-Cryst. Solids 354, 1690 (2008). doi:10.1016/j.jnoncrysol.2007.10.003

    Article  CAS  ADS  Google Scholar 

  4. Y. Zhang, M.Q. Zhang, J. Biomed. Mater. Res. 61, 1 (2002). doi:10.1002/jbm.10176

    Article  PubMed  CAS  Google Scholar 

  5. S. Roy, B. Basu, J. Mater. Sci.: Mater. Med. 19, 3123 (2008). doi:10.1007/s10856-008-3440-3

    Article  CAS  Google Scholar 

  6. Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials 27, 2414 (2006). doi:10.1016/j.biomaterials.2005.11.025

    Article  PubMed  CAS  Google Scholar 

  7. C. Vitale-Brovarone, E. Verne, L. RoD-Alklio, P. Appendino, F. Bassi, G. Marinasso, G. Muzio, R. Canuto, Acta Biomater. 3, 199 (2007). doi:10.1016/j.actbio.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  8. D. Baksh, J.E. Davies, S. Kim, J. Mater. Sci.: Mater. Med. 9, 743 (1998). doi:10.1023/A:1008959103864

    Article  CAS  Google Scholar 

  9. L.J. Gibson, J. Biomech. 38, 377 (2005). doi:10.1016/j.jbiomech.2004.09.027

    Article  PubMed  Google Scholar 

  10. L. Montanaro, Y. Jorand, G. Fantozzi, A. Negro, J Eur Ceram Soc 18, 1339 (1998). doi:10.1016/S0955-2219(98)00063-6

    Article  CAS  Google Scholar 

  11. F.A. Costa Oliveira, S. Dias, M. Fátima Vaz, J. Cruz Fernandes, J. Eur. Ceram. Soc. 26, 179 (2006). doi:10.1016/j.jeurceramsoc.2004.10.008

    Article  CAS  Google Scholar 

  12. X.W. Zhu, D.L. Jiang, S.H. Tan, Mater. Lett. 51, 363 (2001). doi:10.1016/S0167-577X(01)00322-6

    Article  CAS  Google Scholar 

  13. F. Helmann, O.C. Standard, F.A. Müller, M. Hoffman, J. Mater. Sci.: Mater. Med. 18, 1817 (2007). doi:10.1007/s10856-007-3028-3

    Article  CAS  Google Scholar 

  14. Y.U. Kim, M.C. Kim, K.N. Kim, K.M. Kim, S.H. Choi, C.K. Kim et al., Key Eng. Mater. 284/286, 313 (2005)

    Article  Google Scholar 

  15. I.K. Jun, J.H. Song, W.Y. Choi, Y.H. Koh, H.E. Kim, H.W. Kim, J. Am. Ceram. Soc. 90, 2703 (2007). doi:10.1111/j.1551-2916.2007.01762.x

    Article  CAS  Google Scholar 

  16. Y.S. Park, K.N. Kim, K.M. Kim, S.H. Choi, C.K. Kim, R.Z. Legeros et al., J. Mater. Sci. 41, 4357 (2006). doi:10.1007/s10853-006-6261-0

    Article  CAS  ADS  Google Scholar 

  17. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413 (2006). doi:10.1016/j.biomaterials.2006.01.039

    Article  PubMed  CAS  Google Scholar 

  18. C. Wu, J. Chang, W. Zhai, S. Ni, J. Wang, J. Biomed. Mater. Res. B Appl. Biomater. 78, 47 (2006). doi:10.1002/jbm.b.30456

    PubMed  Google Scholar 

  19. E.B.W. Giesen, M. Ding, M. Dalstra, T.M.G.J. van Eijden, J. Biomech. 34, 799 (2001). doi:10.1016/S0021-9290(01)00030-6

    Article  PubMed  CAS  Google Scholar 

  20. Y.N. Yeni, D.P. Fyhrie, J. Biomech. 34, 1649 (2001). doi:10.1016/S0021-9290(01)00155-5

    Article  PubMed  CAS  Google Scholar 

  21. M. Brink, J. Biomed. Mater. Res. 36, 109 (1997). doi:10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  22. A.H. Yao, D.P. Wang, W.H. Huang, F. Qiang, N.R. Mohamed, D.E. Day, J. Am. Ceram. Soc. 90, 303 (2007). doi:10.1111/j.1551-2916.2006.01358.x

    Article  CAS  Google Scholar 

  23. J.S. Reed, Principles of Ceramics Processing (Wiley, New York, 1995), pp. 596–609

    Google Scholar 

  24. D.C. Clupper, L.L. Hench, J. Non-Cryst. Solids 318, 43 (2003). doi:10.1016/S0022-3093(02)01857-4

    Article  CAS  ADS  Google Scholar 

  25. S.F. Hulbert, S.J. Morrison, J.J. Kawitter, J. Biomed. Mater. Res. 6, 347 (1972). doi:10.1002/jbm.820060505

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Science and Technology Commission of Shanghai Municipality, China, under Project (Grant No. 05DJ14006) and Hong Kong RGC:71437/07E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Huang, W., Fu, H. et al. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci: Mater Med 20, 365–372 (2009). https://doi.org/10.1007/s10856-008-3582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3582-3

Keywords

Navigation