Skip to main content
Log in

Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Marrow stromal cell (MSC) populations, which are a potential source of undifferentiated mesenchymal cells, and culture scaffolds that mimic natural extracellular matrix are attractive options for orthopaedic tissue engineering. A type I collagen–glycosaminoglycan (CG) scaffold that has previously been used clinically for skin regeneration was recently shown to support expression of bone-associated proteins and mineralisation by MSCs cultured in the presence of osteogenic supplements. Here we follow RNA markers of osteogenic differentiation in this scaffold. We demonstrate that transcripts of the late stage markers bone sialoprotein and osteocalcin are present at higher levels in scaffold constructs than in two-dimensional culture, and that considerable gene induction can occur in this scaffold even in the absence of soluble osteogenic supplements. We also find that bone-related gene expression is affected by pore size, mechanical constraint, and uniaxial cyclic strain of the CG scaffold. The data presented here further establish the CG scaffold as a potentially valuable substrate for orthopaedic tissue engineering and for research on the mechanical interactions between cells and their environment, and suggest that a more freely-contracting scaffold with larger pore size may provide an environment more conducive to osteogenesis than constrained scaffolds with smaller pore sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I.V. Yannas, E. Lee, D.P. Orgill, E.M. Skrabut, G.F. Murphy, Proc. Natl. Acad. Sci. U. S. A. 86, 933 (1989)

    Article  CAS  Google Scholar 

  2. F.J. O’Brien, B.A. Harley, I.V. Yannas, L. Gibson, Biomaterials 25, 1077 (2004)

    Article  CAS  Google Scholar 

  3. F.J. O’Brien, B.A. Harley, I.V. Yannas, L.J. Gibson, Biomaterials 26, 433 (2005)

    Article  CAS  Google Scholar 

  4. M.H. Spilker, K. Asano, I.V. Yannas, M. Spector, Biomaterials 22, 1085 (2001)

    Article  CAS  Google Scholar 

  5. S. Nehrer, H.A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L.K. Louie, C.B. Sledge, I.V. Yannas, M. Spector, Biomaterials 18, 769 (1997)

    Article  CAS  Google Scholar 

  6. J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Mueller, L.G. Griffith, Tissue Eng. 7, 557 (2001)

    Article  CAS  Google Scholar 

  7. E. Farrell, J.F. O’Brien, P. Doyle, J. Fischer, I. Yannas, B.A. Harley, B. O’Connell, P.J. Prendergast, V.A. Campbell, Tissue Eng. 12, 459 (2006)

    Article  CAS  Google Scholar 

  8. T.M. Freyman, I.V. Yannas, R. Yokoo, L.J. Gibson, Biomaterials 22, 2883 (2001)

    Article  CAS  Google Scholar 

  9. T.M. Freyman, I.V. Yannas, Y.S. Pek, R. Yokoo, L.J. Gibson, Exp. Cell Res. 269, 140 (2001)

    Article  CAS  Google Scholar 

  10. C.R. Lee, H.A. Breinan, S. Nehrer, M. Spector, Tissue Eng. 6, 555 (2000)

    Article  CAS  Google Scholar 

  11. D.S. Torres, T.M. Freyman, I.V. Yannas, M. Spector, Biomaterials 21, 1607 (2000)

    Article  CAS  Google Scholar 

  12. C. Menard, S. Mitchell, M. Spector, Biomaterials 21, 1867 (2000)

    Article  CAS  Google Scholar 

  13. C.A. Simmons, S. Matlis, A.J. Thornton, S. Chen, C.Y. Wang, D.J. Mooney, J. Biomech. 36, 1087 (2003)

    Article  Google Scholar 

  14. M. Koike, H. Shimokawa, Z. Kanno, K. Ohya, K. Soma, J. Bone Miner. Metab. 23, 219 (2005)

    Article  Google Scholar 

  15. L.E. Claes, C.A. Heigele, J. Biomech. 32, 255 (1999)

    Article  CAS  Google Scholar 

  16. L.V. Harter, K.A. Hruska, R.L. Duncan, Endocrinology 136, 528 (1995)

    Article  CAS  Google Scholar 

  17. A. Ignatius, H. Blessing, A. Liedert, C. Schmidt, C. Neidlinger-Wilke, D. Kaspar, B. Friemert, L. Claes, Biomaterials 26, 311 (2005)

    Article  CAS  Google Scholar 

  18. J. Klein-Nulend, J. Roelofsen, C.M. Semeins, A.L. Bronckers, E.H. Burger, J. Cell. Physiol. 170, 174 (1997)

    Article  CAS  Google Scholar 

  19. H.L. Holtorf, J.A. Jansen, A.G. Mikos, J. Biomed. Mater. Res. A 72, 326 (2005)

    Google Scholar 

  20. J. You, G.C. Reilly, X. Zhen, C.E. Yellowley, Q. Chen, H.J. Donahue, C.R. Jacobs, J. Biol. Chem. 276, 13365 (2001)

    Article  CAS  Google Scholar 

  21. J.A. Pedersen, M.A. Swartz, Ann. Biomed. Eng. 33, 1469 (2005)

    Article  Google Scholar 

  22. L.A. McMahon, A.J. Reid, V.A. Campbell, P.J. Prendergast, Ann. Biomed. Eng. 36, 185 (2008)

    Article  Google Scholar 

  23. P.J. Prendergast, R. Huiskes, K. Soballe, J. Biomech. 30, 539 (1997)

    Article  CAS  Google Scholar 

  24. D.J. Kelly, P.J. Prendergast, Tissue Eng. 12, 2509 (2006)

    Article  CAS  Google Scholar 

  25. C.M. Giachelli, S. Steitz, Matrix Biol. 19, 615 (2000)

    Article  CAS  Google Scholar 

  26. H. Kojima, T. Uede, T. Uemura, J. Biochem. (Tokyo) 136, 377 (2004)

    Google Scholar 

  27. E. Farrell, E.M. Byrne, J. Fischer, F.J. O’Brien, B.C. O’Connell, P.J. Prendergast, V.A. Campbell, Technol. Health Care 15, 19 (2007)

    CAS  Google Scholar 

  28. G. Xiao, D. Wang, M.D. Benson, G. Karsenty, R.T. Franceschi, J. Biol. Chem. 273, 32988 (1998)

    Article  CAS  Google Scholar 

  29. M.P. Lynch, J.L. Stein, G.S. Stein, J.B. Lian, Exp. Cell Res. 216, 35 (1995)

    Article  CAS  Google Scholar 

  30. M. Mizuno, Y. Kuboki, J Biochem. (Tokyo) 129, 133 (2001)

    CAS  Google Scholar 

  31. J. Jaworski, C.M. Klapperich, Biomaterials 27, 4212 (2006)

    Article  CAS  Google Scholar 

  32. P. Tolstoshev, R. Haber, B.C. Trapnell, R.G. Crystal, J. Biol. Chem. 256, 9672 (1981)

    CAS  Google Scholar 

  33. M.A. Stepp, M.S. Kindy, C. Franzblau, G.E. Sonenshein, J. Biol. Chem. 261, 6542 (1986)

    CAS  Google Scholar 

  34. S. Gronthos, A.C. Zannettino, S.J. Hay, S. Shi, S.E. Graves, A. Kortesidis, P.J. Simmons, J. Cell Sci. 116, 1827 (2003)

    Article  CAS  Google Scholar 

  35. N. Madras, A.L. Gibbs, Y. Zhou, P.W. Zandstra, J.E. Aubin, Stem Cells 20, 230 (2002)

    Article  CAS  Google Scholar 

  36. F. Liu, L. Malaval, J.E. Aubin, J. Cell Sci. 116, 1787 (2003)

    Article  CAS  Google Scholar 

  37. F. Liu, L. Malaval, J.E. Aubin, Exp. Cell Res. 232, 97 (1997)

    Article  CAS  Google Scholar 

  38. O. Frank, M. Heim, M. Jakob, A. Barbero, D. Schafer, I. Bendik, W. Dick, M. Heberer, I. Martin, J. Cell. Biochem. 85, 737 (2002)

    Article  CAS  Google Scholar 

  39. J. van den Dolder, A.J. de Ruijter, P.H. Spauwen, J.A. Jansen, Biomaterials 24, 1853 (2003)

    Article  Google Scholar 

  40. J. O’Brien F, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, Technol. Health Care 15, 3 (2007)

    Google Scholar 

  41. F. Grinnell, J. Cell Biol. 124, 401 (1994)

    Article  CAS  Google Scholar 

  42. A. Rattner, O. Sabido, J. Le, L. Vico, C. Massoubre, J. Frey, A. Chamson, Calcif. Tissue Int. 66, 35 (2000)

    Article  CAS  Google Scholar 

  43. S.M. Vickers, L.S. Squitieri, M. Spector, Tissue Eng. 12, 1345 (2006)

    Article  CAS  Google Scholar 

  44. D.T. Denhardt, E.H. Burger, C. Kazanecki, S. Krishna, C.M. Semeins, J. Klein-Nulend, Biochem. Biophys. Res. Commun. 288, 448 (2001)

    Article  CAS  Google Scholar 

  45. S. Marlovits, G. Striessnig, F. Kutscha-Lissberg, C. Resinger, S.M. Aldrian, V. Vecsei, S. Trattnig, Knee Surg. Sports Traumatol. Arthrosc. 13, 451 (2005)

    Article  Google Scholar 

  46. N. Juncosa-Melvin, G.P. Boivin, M.T. Galloway, C. Gooch, J.R. West, D.L. Butler, Tissue Eng. 12, 681 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Programme for Research in Third Level Institutions (Trinity Centre for Bioengineering) administered by the Higher Education Authority, Ireland. We thank Dr. Ionnais Yannas and Dr. Brendan Harley (Massachusetts Institute of Technology) for the generous gift of scaffold used in some of the experiments, Mr. Alan Reid and Mr. Gabriel Nicholson (Trinity Centre for Bioengineering) for rig design and fabrication, respectively, and Prof. Noel Claffey (Dublin Dental School and Hospital) for advice on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine M. Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, E.M., Farrell, E., McMahon, L.A. et al. Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. J Mater Sci: Mater Med 19, 3455–3463 (2008). https://doi.org/10.1007/s10856-008-3506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3506-2

Keywords

Navigation