Skip to main content
Log in

Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The microstructural evolution and attendant strengthening mechanisms in two biocompatible alloy systems, the binary Ti-15Mo and the quaternary Ti-13Mo-7Zr-3Fe (TMZF), have been compared and contrasted in this paper. In the homogenized condition, while the Ti-15Mo alloy exhibited a single phase microstructure consisting of large β grains, the TMZF alloy exhibited a microstructure consisting primarily of a β matrix with grain boundary α precipitates and a low volume fraction of intra-granular α precipitates. On ageing the homogenized alloys at 600 C for 4 h, both alloys exhibited the precipitation of refined scale secondary α precipitates homogeneously in the β matrix. However, while the hardness of the TMZF alloy marginally increased, that of the Ti-15Mo alloy decreased substantially as a result of the ageing treatment. In order to understand this difference in the mechanical properties after ageing, TEM studies have been carried out on both alloys in the homogenized and homogenized plus aged conditions. The results indicate that the ω precipitates dissolve on ageing in case of the Ti-15Mo alloy, consequently leading to a substantial decrease in the hardness. In contrast, the ω precipitates do not dissolve on ageing in the TMZF alloy and the precipitation of the fine scale secondary α leads to increased hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. LONG and H. J. RACK, Biomater. 19 (1998) 1621.

    Article  CAS  Google Scholar 

  2. E. W. LOWMAN, J. Amer. Med. Acad. 157 (1955) 487.

    CAS  Google Scholar 

  3. K. WANG, Mater. Sci. and Eng. A213 (1996) 134.

    Article  CAS  Google Scholar 

  4. C. M. LEE, W. F. HO, C. P. JU and J. H. CHERN LIN, J. Mater. Sci. Mater. Med. 13 (2002) 695.

    Article  CAS  PubMed  Google Scholar 

  5. M. F. SEMLITSCH, H. WEBER, R. M. STREICHER and R. SCHÖN, Biomater. 13(11) (1992) 781.

    Article  CAS  Google Scholar 

  6. K.-H. BOROWY and K.-H. KRAMMER, “On the Properties of a New Titanium Alloy (Ti-5Al-2.5Fe) as Implant Material,” Titanium 84’: Science and Technology, Vol. 2 Munich, Deutsche Gesellschaft Für Metallkunde EV (1985) p. 1381.

  7. S. G. STEINEMANN, “Corrosion of Surgical Implants–-in vivo and in vitro Tests,” Evaluation of Biomaterials, edited by G. D. Winter, J. L. Leray and K. de Groot (Wiley, New York, 1980).

    Google Scholar 

  8. S. G. STEINEMANN, “Corrosion of Titanium and Titanium Alloys for Surgical Implants,” Titanium 84’: Science and Technology, Vol. 2 Munich, Deutsche Gesellschaft Für Metallkunde EV, (1985) p. 1373.

  9. S. RAO, T. USHIDA, T. TATEISHI, Y. OKAZAKI and S. ASAO, Bio-med. Mater. Eng. 6 (1996) 79.

    CAS  Google Scholar 

  10. P. R. WALKER, J. LEBLANC and M. SIKORSKA, Biochemistry 28 (1990) 3911.

    Article  Google Scholar 

  11. E. CHEAL, M. SPECTOR and W. HAYES, J. Orthop. Res. 10 (1992) 405.

    Article  CAS  PubMed  Google Scholar 

  12. P. PRENDERGAST and D. TAYLOR, J. Biomed. Eng. 12(5) (1990) 379.

    CAS  PubMed  Google Scholar 

  13. W. F. HO, C. P. JU and J. H. CHERN LIN, Biomater. 20 (1999) 2115.

    Article  CAS  Google Scholar 

  14. K. WANG, L. GUSTAVSON and J. DUMBLETON, “The Characterization of Ti-12Mo-6Zr-2Fe. A New Biocompatible Titanium Alloy Developed for Surgical Implants,” Beta Titanium in the 1990’s (The Mineral, Metals and Materials Society, Warrendale, Pennsylvania, 1993) p. 2697.

  15. S. G. STEINEMANN, P.-A. MÄUSLI, S. SZMUKLER-MONCLER, M. SEMLITSCH, O. POHLER, H. -E HINTERMANN and S.-M. PERREN, “Beta-Titanium Alloy for Surgical Implants,” Beta Titanium in the 1990’s (The Mineral, Metals and Materials Society, Warrendale, Pennsylvania, 1993) p. 2689.

    Google Scholar 

  16. J. C. FANNING, “Properties and Processing of a New Metastable Beta Titanium Alloy for Surgical Implant Applications: TIMETALTM 21SRx,” Titanium 95’: Science and Technology (1996) p. 1800.

  17. A. K. MISHRA, J. A. DAVIDSON, P. KOVACS and R. A. POGGIE, “Ti-13Nb-13Zr: A New Low Modulus, High Strength, Corrosion Resistant Near-Beta Alloy for Orthopaedic Implants,” Beta Titanium in the 1990’s (The Mineral, Metals and Materials Society, Warrendale, Pennsylvania, 1993) p. 61.

    Google Scholar 

  18. T. A. AHMED, M. LONG, J. SILVERSTRI, C. RUIZ and H. J. RACK, “A New Low Modulus Biocompatible Titanium Alloy,” Titanium 95’: Science and Technology, 1996) p. 1760.

  19. K. WANG, Mater. Sci. Eng. A 213 (1996) 134.

    Article  Google Scholar 

  20. A. K. BOWEN, Scripta Metall. 5 (1971) 709.

    Article  CAS  Google Scholar 

  21. A. K. BOWEN, “On the Strengthening of Metastable β-Titanium Alloy by ω- an α-Precipitation,” Titanium’80 Science and Technology, in Proceedings of the Fourth International Conference on Titanium, Kyoto, Japan, 1980) p. 1317.

  22. J. C. WILLIAMS, B. S. HICKMAN and D. H. LESLIE, Metall. Trans. 2 (1971) 477.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nag, S., Banerjee, R., Stechschulte, J. et al. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. J Mater Sci: Mater Med 16, 679–685 (2005). https://doi.org/10.1007/s10856-005-2540-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-2540-6

Keywords

Navigation