Skip to main content
Log in

Comparative study of electromagnetic functional epoxy composites filled with Fe-based materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Considering that epoxy composites filled with Fe-based materials can be an alternative for the processing of microwave absorbing materials (MAMs) and electromagnetic shielding materials, this work presents a comparative study with three different Fe-based materials, two with magnetic characteristics: manganese zinc ferrite–MZ and carbonyl iron–CI and a non-magnetic one: ferric oxide–FO. This study compares the main structural and morphological characteristics of fillers with the electromagnetic interference shielding effectiveness (EMI SE) and the reflection loss (RL) behaviors of epoxy composites, prepared with 30, 50, and 70 wt% of fillers by mechanical mixing. The results show that the intrinsic magnetic properties of MZ and CI had a significant influence on the EM properties, as expected, and also on the electrical conductivity. Notably, a higher content of magnetic particles (MZ and CI) increased the EMI SE. Epoxy/MZ-70 achieved 30 dB of EMI SE, with a predominant shielding mechanism by absorption. The 2.1 mm thick epoxy/CI-70 presented the most effective RL result (− 20 dB at 10.4 GHz). The epoxy/FO composite showed less significant results because this filler does not have magnetic and electrical characteristics. The experimental and simulated RL curves were close, with a slight shift in frequency. Simulated curves allowed exploring the behavior of MAMs at different thicknesses. This work clearly shows the influence of the different magnetic natures of Fe-based fillers on the EMI SE and RL behaviors of epoxy composites, emphasizing the EM behavior of materials processed with magnetic and non-magnetic Fe-based fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Khodadadi Yazdi, B. Noorbakhsh, B. Nazari, Z. Ranjbar, Prog. Org. Coatings. 145, 105674 (2020)

    Article  CAS  Google Scholar 

  2. H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, ACS Appl. Mater. Interfaces 7, 4744 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Mu, Z.H. Ma, H.S. Liang, L.M. Zhang, H.J. Wu, Rare Met. 41, 2943 (2022)

    Article  CAS  Google Scholar 

  4. E. Mikinka, M. Siwak, Recent Advances in Electromagnetic Interference Shielding Properties of Carbon-Fibre-Reinforced Polymer Composites—a Topical Review (Springer, US, 2021)

    Book  Google Scholar 

  5. S. Kumar, A. Ohlan, P. Kumar, V. Verma, J. Supercond. Nov. Magn. 33, 1187 (2020)

    Article  CAS  Google Scholar 

  6. K.S. Anu, K. Vishnumurthy, A. Mahesh, B.S. Suresh, K. Natarajan, J. Indian Chem. Soc. 99, 100720 (2022)

    Article  Google Scholar 

  7. P. Mohan, Polym. - Plast. Technol. Eng. 52, 107 (2013)

    Article  CAS  Google Scholar 

  8. J. Huo, L. Wang, H. Yu, J. Mater. Sci. 44, 3917 (2009)

    Article  CAS  Google Scholar 

  9. N. Saba, M. Jawaid, O.Y. Alothman, M.T. Paridah, A. Hassan, J. Reinf. Plast. Compos. 35, 447 (2016)

    Article  CAS  Google Scholar 

  10. J.P. Gogoi, N.S. Bhattacharyya, K.C. James Raju, Compos. Part B Eng. 42, 1291 (2011)

    Article  Google Scholar 

  11. S. Hema, S. Sambhudevan, Chem. Pap. 75, 3697 (2021)

    Article  Google Scholar 

  12. M.A. Darwish, S.A. Saafan, D. El- Kony, N.A. Salahuddin, J. Magn. Magn. Mater. 385, 99 (2015)

    Article  CAS  Google Scholar 

  13. I. Mohammed, J. Mohammed, A.K. Srivastava, Cryst. Res. Technol. 2200200, 1 (2022)

    Google Scholar 

  14. Z.Z. Lazarević, C. Jovalekić, A. Milutinović, D. Sekulić, M. Slankamenac, M. Romčević, N.Z. Romčević, Ferroelectrics 448, 1 (2013)

    Article  Google Scholar 

  15. A. Rayar, C.S. Naveen, H.S. Onkarappa, V.S. Betageri, G.D. Prasanna, Synth. Met. 295, 117338 (2023)

    Article  CAS  Google Scholar 

  16. C. Marius, M. Chirita, I. Grozescu, Chem. Bull. Politeh. Univ. Timsisoara 54, 1 (2015)

    Google Scholar 

  17. X. Guo, Z. Yao, H. Lin, J. Zhou, Y. Zuo, X. Xu, B. Wei, W. Chen, K. Qian, J. Magn. Magn. Mater. 485, 244 (2019)

    Article  CAS  Google Scholar 

  18. Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Carbon N. Y. 86, 98 (2015)

    Article  CAS  Google Scholar 

  19. N. Maruthi, M. Faisal, N. Raghavendra, Synth. Met. 272, 116664 (2021)

    Article  CAS  Google Scholar 

  20. V. Shukla, Nanoscale Adv. 1, 1640 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  21. V.K. Chakradhary, S. Juneja, M. Jaleel Akhtar, Mater. Today Commun. 25, 101386 (2020)

    Article  CAS  Google Scholar 

  22. M.S. Boon, W.P. Serena Saw, M. Mariatti, J. Magn. Magn. Mater. 324, 755 (2012)

    Article  CAS  Google Scholar 

  23. T. Indrusiak, I.M. Pereira, A.P. Heitmann, J.G. Silva, Â.M.L. Denadai, B.G. Soares, J. Mater. Sci. Mater. Electron. 31, 13118 (2020)

    Article  CAS  Google Scholar 

  24. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  25. G. Kunkel, Shielding of Electromagnetic Waves. Measurement and Control 24, 282–285 (1991)

    Article  Google Scholar 

  26. E.G.R. Anjos, T.R. Brazil, G.F.M. Morgado, E. Antonelli, N.C.F.L. Medeiros, A. Pinheiro, T. Indrusiak, M.R. Baldan, M.C. Rezende, L.A. Pessan, F.R. Passador, FlatChem 41, 100542 (2023)

    Article  Google Scholar 

  27. G.X. Tong, W.H. Wu, Q. Hu, J.H. Yuan, R. Qiao, H.S. Qian, Mater. Chem. Phys. 132, 563 (2012)

    Article  CAS  Google Scholar 

  28. A. Hajalilou, S.A. Mazlan, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Article  CAS  Google Scholar 

  29. M. Li, H. Fang, H. Li, Y. Zhao, T. Li, H. Pang, J. Tang, X. Liu, J. Supercond. Nov. Magn. 30, 2275 (2017)

    Article  CAS  Google Scholar 

  30. P. Galinetto, B. Albini, M. Bini, M.C. Mozzati, Raman Spectrosc. (2018). https://doi.org/10.5772/intechopen.72864

    Article  Google Scholar 

  31. Y.Y. Xu, D. Zhao, X.J. Zhang, W.T. Jin, P. Kashkarov, H. Zhang, Phys. E Low-Dimensional Syst. Nanostructures 41, 806 (2009)

    Article  Google Scholar 

  32. X. Su, C. Yu, C. Qiang, Appl. Surf. Sci. 257, 9014 (2011)

    Article  CAS  Google Scholar 

  33. F. Nekvapil, A. Bunge, T. Radu, S. Cinta Pinzaru, R. Turcu, J. Raman Spectrosc. 51, 959 (2020)

    Article  CAS  Google Scholar 

  34. S. Mallesh, V. Srinivas, J. Magn. Magn. Mater. 475, 290 (2019)

    Article  CAS  Google Scholar 

  35. D.L.A. De Faria, S. Venâncio Silva, M.T. De Oliveira, J. Raman Spectrosc. 28, 873 (1997)

    Article  Google Scholar 

  36. L.X. Gong, L. Zhao, L.C. Tang, H.Y. Liu, Y.W. Mai, Compos. Sci. Technol. 121, 104 (2015)

    Article  CAS  Google Scholar 

  37. Y.J. Wan, L.C. Tang, L.X. Gong, D. Yan, Y.B. Li, L. Bin Wu, J.X. Jiang, G.Q. Lai, Carbon 69, 467 (2014)

    Article  CAS  Google Scholar 

  38. H. Yao, S.A. Hawkins, H.J. Sue, Compos. Sci. Technol. 146, 161 (2017)

    Article  CAS  Google Scholar 

  39. K. Latha, D. Ravinder, Phys. Status Solidi 139, K109 (1993)

    Article  CAS  Google Scholar 

  40. M.E. Hajlaoui, R. Dhahri, N. Hnainia, A. Benchaabane, E. Dhahri, K. Khirouni, RSC Adv. 9, 32395 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. E.G.R. dos Anjos, J. Marini, N.A.S. Gomes, M.C. Rezende, F.R. Passador, J. Appl. Polym. Sci. 139, 1 (2022)

    Google Scholar 

  42. A.R. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Polymers (Basel) 10, 19 (2018)

    Article  Google Scholar 

  43. C. Liu, Z. Zeng, J. Qiao, Q. Wu, W. Liu, F. Gao, J. Liu, Carbon 213, 118277 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Process 2021/10136–3) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Processes 440132/2021–3, 307933/2021–0, and 305123/2018–1) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tayra Rodrigues Brazil, Erick Gabriel Ribeiro dos Anjos, and Guilherme Ferreira de Melo Morgado. The first draft of the manuscript was written by Tayra Rodrigues Brazil and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabio Roberto Passador.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Data availability

The data that support the findings of this study are available from the corresponding author, Fabio Roberto Passador, upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazil, T.R., dos Anjos, E.G.R., de Melo Morgado, G.F. et al. Comparative study of electromagnetic functional epoxy composites filled with Fe-based materials. J Mater Sci: Mater Electron 35, 537 (2024). https://doi.org/10.1007/s10854-024-12310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12310-3

Navigation