Skip to main content
Log in

Fabrication of ultra-sensitive humidity sensors based on Ce-doped ZnO nanostructure with superfast response and recovery time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effect of cerium (Ce) concentration on humidity sensing performance of humidity sensors based on Ce-doped zinc oxide nanostructure was investigated. Undoped ZnO (uZnO) and Ce-doped zinc oxide (CZO) nanoparticles were synthesized by sol–gel method. X-ray diffraction analyzes revealed that all nanostructures have a hexagonal wurtzite crystal structure and preferential orientation along the (002) plane. Scanning electron microscopy micrographs showed that there are homogeneously and uniformly distributed nanosized grains and capillary-nanopores on the surfaces of nanostructures. The energy dispersive x-ray spectroscopy analyzes confirmed the presence of zinc, oxygen and Ce elements in the nanostructures. The relative humidity (RH) sensing performances of uZnO and CZO nanostructured sensors were determined by means of electrical resistance measurements in the range of 40–90% RH at room temperature. The humidity sensing performance of the zinc oxide (ZnO) nanostructured sensor was significantly increased by Ce doping. All of the CZO sensors showed very high sensitivity to humidity and very short response and recovery times were achieved. It has been determined that 3 mol% Ce-doped ZnO has the best crystallite quality, the highest humidity sensitivity with a ratio of 7490 in the range of 40–90% RH, and the fastest times with a response time of 0.8 s and a recovery time of 4.7 s. This study clearly showed that CZO nanostructures, which we produce easily and at low cost, have the ideal humidity sensor potential and therefore have a bright future for humidity sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Zeng, Q. Pan, Z. Huang, C. Gu, T. Wang, J. Xu, Z. Yan, F. Zhao, P. Li, Y. Tu, Y. Fan, L. Chen, Mater. Des. 226, 111683 (2023)

    Article  CAS  Google Scholar 

  2. Y. Cheng, Y. Xiong, M. Pan, L. Li, L. Dong, Mater. Lett. 330, 133268 (2023)

    Article  CAS  Google Scholar 

  3. M.T.S. Chani, Int. J. Biol. Macromol. 194, 377 (2022)

    Article  CAS  Google Scholar 

  4. X. Le, L. Peng, J. Pang, Z. Xu, C. Gao, J. Xie, Sens. Actuators B Chem. 283, 198 (2019)

    Article  CAS  Google Scholar 

  5. J. Wang, W. Zeng, J. Sens. 2022, 1–29 (2022)

    Google Scholar 

  6. K.P. Biju, M.K. Jain, Sens. Actuators B Chem. 128, 407 (2008)

    Article  CAS  Google Scholar 

  7. S. Kozhukharov, Z. Nenova, T. Nenov, N. Nedev, M. Machkova, Sens. Actuators B Chem. 210, 676 (2015)

    Article  CAS  Google Scholar 

  8. C. Sun, Q. Shi, M.S. Yazici, C. Lee, Y. Liu, Sens. (Switzerland). 18, 1 (2018)

    CAS  Google Scholar 

  9. J. Wang, M.Y. Su, J.Q. Qi, L.Q. Chang, Sens. Actuators B Chem. 139, 418 (2009)

    Article  CAS  Google Scholar 

  10. C. Wang, Y. Wang, Proceedings of the 6th International Conference on Electronic, Mechanical, Information and Management Society (Atlantis Press, 2016), p. 873

  11. Q. Qi, T. Zhang, S. Wang, X. Zheng, Sens. Actuators B Chem. 137, 649 (2009)

    Article  CAS  Google Scholar 

  12. K.O. Zheng, N. Rosli, M.M. Mohd, Rashid, M.M. Halim, Phys. B Condens. Matter. 648, 414425 (2023)

    Article  CAS  Google Scholar 

  13. T. Okada, B.H. Agung, Y. Nakata, Appl. Phys. A Mater. Sci. Process. 79, 1417 (2004)

    Article  CAS  Google Scholar 

  14. J.L. Gomez, O. Tigli, J. Mater. Sci. 48, 612 (2013)

    Article  CAS  Google Scholar 

  15. K. Iwata, H. Tampo, A. Yamada, P. Fons, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, Appl. Surf. Sci. 244, 504 (2005)

    Article  CAS  Google Scholar 

  16. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Procedia Chem. 19, 211 (2016)

    Article  CAS  Google Scholar 

  17. S. Yu, H. Zhang, C. Lin, M. Bian, Curr. Appl. Phys. 19, 82 (2019)

    Article  Google Scholar 

  18. J.H. Lee, B.O. Park, Thin Solid Films. 426, 94 (2003)

    Article  CAS  Google Scholar 

  19. N. Fifere, A. Airinei, D. Timpu, A. Rotaru, L. Sacarescu, L. Ursu, J. Alloys Compd. 757, 60 (2018)

    Article  CAS  Google Scholar 

  20. M. Anbia, S.E.M. Fard, J. Rare Earths. 30, 38 (2012)

    Article  CAS  Google Scholar 

  21. Akshata, Sangeetha, Dhanush, and S. Acharya, Mater. Today: Proc. 55, 109 (2022)

    Article  CAS  Google Scholar 

  22. J.J. Vijaya, L.J. Kennedy, G. Sekaran, B. Jeyaraj, K.S. Nagaraja, Sens. Actuators B Chem. 123, 211 (2007)

    Article  CAS  Google Scholar 

  23. X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang, Phys. B Condens. Matter. 388, 145 (2007)

    Article  CAS  Google Scholar 

  24. K.S. Usha, R. Sivakumar, C. Sanjeeviraja, J. Vivekanandan, Mater. Chem. Phys. 294, 127007 (2022)

    Article  Google Scholar 

  25. B.G. Choi, I.H. Kim, D.H. Kim, K.S. Lee, T.S. Lee, B. Cheong, Y.J. Baik, W.M. Kim, J. Eur. Ceram. Soc. 25, 2161 (2005)

    Article  CAS  Google Scholar 

  26. M.S. Kim, T.H. Kim, D.Y. Kim, G.S. Kim, H.Y. Choi, M.Y. Cho, S.M. Jeon, J.S. Kim, J.S. Kim, D.Y. Lee, J.S. Son, J.I. Lee, J.H. Kim, E. Kim, D.W. Hwang, J.Y. Leem, J. Cryst. Growth. 311, 3568 (2009)

    Article  CAS  Google Scholar 

  27. Y. Yang, J. Liang, Z. Zhang, C. Tian, X. Wu, Y. Zheng, Y. Huang, J. Wang, Z. Zhou, M. He, Z. Chen, C.C. Chen, ChemSusChem 15(6), e202102474. (2022)

    Article  Google Scholar 

  28. N.H. Hashim, S. Subramani, M. Devarajan, A.R. Ibrahim, J. Aust Ceram. Soc. 53, 421 (2017)

    Article  CAS  Google Scholar 

  29. A. Ouhaibi, M. Ghamnia, M.A. Dahamni, V. Heresanu, C. Fauquet, D. Tonneau, J. Sci. Adv. Mater. Devices. 3, 29 (2018)

    Article  Google Scholar 

  30. R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Mater. Sci. Semicond. Process. 32, 152 (2015)

    Article  CAS  Google Scholar 

  31. S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, J. Cryst. Growth. 287, 78 (2006)

    Article  CAS  Google Scholar 

  32. K.M. Kang, Y. Wang, M. Kim, C. Lee, H.H. Park, Appl. Surf. Sci. 535, 147734 (2021)

    Article  CAS  Google Scholar 

  33. M. Yarahmadi, H. Maleki-Ghaleh, M.E. Mehr, Z. Dargahi, F. Rasouli, M.H. Siadati, J. Alloys Compd. 853, 157000 (2021)

    Article  CAS  Google Scholar 

  34. S. Suwanboon, W. Somraksa, P. Amornpitoksuk, C. Randorn, J. Alloys Compd. 832, 154963 (2020)

    Article  CAS  Google Scholar 

  35. R. Phillips, K. Jolley, Y. Zhou, R. Smith, Carbon Trends 5, 1001 (2021)

    Article  Google Scholar 

  36. K. Pradeev Raj, K. Sadaiyandi, A. Kennedy, R. Thamizselvi, Mater. Chem. Phys. 183, 24 (2016)

    Article  CAS  Google Scholar 

  37. P. Scherrer, Nachr. Ges Wiss Göttingen. 26, 98 (1918)

    Google Scholar 

  38. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)

    Article  CAS  Google Scholar 

  39. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  40. C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian, P. Dhamodharan, Appl. Nanosci. 6, 815 (2016)

    Article  CAS  Google Scholar 

  41. J.R. Ares, A. Pascual, I.J. Ferrer, C. Sánchez, Thin Solid Films. 480–481, 477 (2005)

    Article  Google Scholar 

  42. P. Kumar, B.K. Singh, B.N. Pal, P.C. Pandey, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Article  Google Scholar 

  43. L. Maria Jose, S. Anna Thomas, A. Aravind, Y.R. Ma, S. Anil, Kadam, Inorg. Chem. Commun. 147, 110208 (2023)

    Article  CAS  Google Scholar 

  44. W.P. Tai, J.H. Oh, J. Mater. Sci. Mater. Electron. 13, 391 (2002)

    Article  CAS  Google Scholar 

  45. W.P. Tai, J.H. Oh, Thin Solid Films. 422, 220 (2002)

    Article  CAS  Google Scholar 

  46. K. Sen Chou, T.K. Lee, F.J. Liu, Sens. Actuators B Chem. 56, 106 (1999)

    Article  Google Scholar 

  47. N.D.M. Sin, S. Ahmad, M.F. Malek, M.H. Mamat, M. Rusop, IOP Conf. Ser. Mater. Sci. Eng. 46, 3805–3815 (2013)

    Article  Google Scholar 

  48. V.K. Tomer, S. Duhan, P.V. Adhyapak, I.S. Mulla, J. Am. Ceram. Soc. 98, 741 (2015)

    Article  CAS  Google Scholar 

  49. N.D.M. Sin, N. Samsudin, S. Ahmad, M.H. Mamat, M. Rusop, Procedia Eng. 56, 801 (2013)

    Article  CAS  Google Scholar 

  50. J. Wu, Y. Chen, W. Shen, Y. Wu, J.-P. Corriou, Ceram. Int. 49, 2204 (2022)

    Article  Google Scholar 

  51. K.P. Biju, M.K. Jain, Thin Solid Films. 516, 2175 (2008)

    Article  CAS  Google Scholar 

  52. V. Verma, N.K. Pandey, P. Gupta, K. Singh, P. Singh, Phys. B Condens. Matter. 619, 413224 (2021)

    Article  CAS  Google Scholar 

  53. S.S. Shanawad, B. Chethan, V. Prasad, A. Sunilkumar, V.S. Veena, J. Mater. Sci. Mater. Electron. 34, 1 (2023)

    Article  Google Scholar 

  54. A.K. Khaleel, L.K. Abbas, Optik (Stuttg). 272, 170288 (2023)

    Article  CAS  Google Scholar 

  55. Y.F. Jiang, C.Y. Guo, X.F. Zhang, X.L. Cheng, L.H. Huo, T.T. Wang, Y.M. Xu, Rare Met. 42, 56 (2023)

    Article  CAS  Google Scholar 

  56. M.X. Chong, C.T. Li, L.X. Zhang, L.J. Bie, Sens. Actuators Phys. 351, 114153 (2023)

    Article  CAS  Google Scholar 

  57. A.S.R.A. Subki, M.H. Mamat, M.M. Zahidi, M.H. Abdullah, I.B.S. Banu, N. Vasimalai, M.K. Ahmad, N. Nayan, S.A. Bakar, A. Mohamed, M.D. Birowosuto, M.R. Mahmood, Chemosensors. 10(11), 489 (2022)

    Article  CAS  Google Scholar 

  58. W. Gu, H. Zhang, C. Chen, J. Zhang, Curr. Appl. Phys. 34, 112 (2022)

    Article  Google Scholar 

  59. G. Algün, N. Akçay, J. Mater. Sci. Mater. Electron. 30, 16124 (2019)

    Article  Google Scholar 

  60. L.P. Babu Reddy, R. Megha, H.G. Raj Prakash, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya, Kumari, D. Kim, Inorg. Chem. Commun. 99, 180 (2019)

    Article  CAS  Google Scholar 

  61. S. Thakur, P. Patil, Sens. Actuators B Chem. 194, 260 (2014)

    Article  CAS  Google Scholar 

  62. M.S. Siddiqui, A. Mandal, H. Kalita, M. Aslam, Sens. Actuators B Chem. 365, 131930 (2022)

    Article  CAS  Google Scholar 

  63. A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, M.C. Lemme, Nanoscale. 7, 19099 (2015)

    Article  CAS  Google Scholar 

  64. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Sci. Rep. 3(1), 2714 (2013)

    Article  Google Scholar 

  65. K. Rathi, K. Pal, ACS Omega. 2, 842 (2017)

    Article  CAS  Google Scholar 

  66. Y. Zhang, B. Li, Y. Jia, Mater. (Basel) 15(8), 2932 (2022)

    Article  CAS  Google Scholar 

  67. B. Tao, J. Yin, F. Miao, Y. Zang, Ionics (Kiel). 28, 2413 (2022)

    Article  CAS  Google Scholar 

  68. Q. Zafar, M.I. Azmer, A.G. Al-Sehemi, M.S. Al-Assiri, A. Kalam, K. Sulaiman, J. Nanoparticle Res. 18, 1 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Musa Mutlu Can for his XRD measurement support in this study.

Funding

This work was funded by the Scientific Research Projects Coordination Unit of Istanbul University. Project numbers are FYL-2021-38266, FYL-2017-24168 and FDK-2021-38183.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was carried out by HOO. Data collection was done by GA. Analyses were carried out by GA and NA. The first draft of the manuscript was written by NA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Namık Akçay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article contains no studies involving human participants or animals as subjects. The corresponding author is prepared to collect documentation of compliance with ethical standards and send it if requested during peer review or after publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akçay, N., Algün, G. & Öztel, H.O. Fabrication of ultra-sensitive humidity sensors based on Ce-doped ZnO nanostructure with superfast response and recovery time. J Mater Sci: Mater Electron 34, 1565 (2023). https://doi.org/10.1007/s10854-023-10973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10973-y

Navigation