Skip to main content

Advertisement

Log in

An enhanced nano-energy harvesting device by hybrid piezoelectric/triboelectric composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoenergy plays a vital role in the micro energy supply of sensors and wearable devices. Higher driving and sensing capabilities are very important for devices. A hybrid nanogenerator (HENG) with cascaded piezoelectric (PENG) and triboelectric nanogenerator (TENG) was designed. The BNBT/PVDF and BNN/PDMS composite films were used as the piezoelectric and triboelectric layers, respectively. The synergistic effect of the PENG and TENG units can improve the output signal. The open-circuit voltage of 120 V generated by the HENG is higher than that of the PENG and TENG. The obvious voltage signal is observed when the HENG is pressed by finger bending, palm tapping, and foot tapping. The stable output voltage of the HENG can drive 50 yellow LEDs. Therefore, the cascaded method provides a new design method for sensor and energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Zhang, Z. Tang, X. Liu, J. Van der Spiegel, Electronic neural interfaces, Nature. Electronics 3, 191–200 (2020)

    Google Scholar 

  2. Y. Zi, Z.L. Wang, Nanogenerators: an emerging technology towards nanoenergy. APL Mater. 5, 074103 (2017)

    Article  Google Scholar 

  3. Z. Wang, W. Liu, W. He, H. Guo, L. Long, Y. Xi, X. Wang, A. Liu, C. Hu, Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 5, 441–455 (2021)

    Article  Google Scholar 

  4. J. Song, B. Yang, W. Zeng, Z. Peng, S. Lin, J. Li, X. Tao, Highly flexible, large-area, and facile textile-based hybrid nanogenerator with cascaded piezoelectric and triboelectric units for mechanical energy harvesting. Adv. Mater. Technol. 3, 1800016 (2018)

    Article  Google Scholar 

  5. W. Li, N. Matsuhisa, Z. Liu, M. Wang, Y. Luo, P. Cai, G. Chen, F. Zhang, C. Li, Z. Liu, Z. Lv, W. Zhang, X. Chen, An on-demand plant-based actuator created using conformable electrodes, nature. Electronics 4, 134–142 (2021)

    Google Scholar 

  6. G. Jian, Y. Jiao, Q. Meng, H. Shao, F. Wang, Z. Wei, 3D BaTiO3 flower based polymer composites exhibiting excellent piezoelectric energy harvesting properties. Adv. Mater. Interfaces 7, 2000484 (2020)

    Article  CAS  Google Scholar 

  7. P. Parajuli, B. Sharma, H. Behlow, A.M. Rao, Fullerene-enhanced triboelectric nanogenerators. Adv. Mater. Technol. 5, 2000295 (2020)

    Article  CAS  Google Scholar 

  8. H.R. Lim, H.S. Kim, R. Qazi, Y.T. Kwon, J.W. Jeong, W.H. Yeo, Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, 1901924 (2020)

    Article  CAS  Google Scholar 

  9. A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov, S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt, L. Benini, A.C. Arias, J.M. Rabaey, A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition, Nature. Electronics 4, 54–63 (2020)

    Google Scholar 

  10. K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32, e1902549 (2020)

    Article  Google Scholar 

  11. X. Li, L. Zhang, Y. Feng, Y. Zheng, Z. Wu, X. Zhang, N. Wang, D. Wang, F. Zhou, Reversible temperature-sensitive liquid-solid triboelectrification with polycaprolactone material for wetting monitoring and temperature sensing. Adv. Funct. Mater. 31, 2010220 (2021)

    Article  CAS  Google Scholar 

  12. X. Wu, J. Zhu, J.W. Evans, C. Lu, A.C. Arias, A potentiometric electronic skin for thermosensation and mechanosensation. Adv. Funct. Mater. 31, 2010824 (2021)

    Article  CAS  Google Scholar 

  13. Y. Liu, H. Zheng, L. Zhao, S. Liu, K. Yao, D. Li, C. Yiu, S. Gao, R. Avila, C. Pakpong, L. Chang, Z. Wang, X. Huang, Z. Xie, Z. Yang, X. Yu, Electronic skin from high-throughput fabrication of intrinsically stretchable lead zirconate titanate elastomer. Research 2020, 1085417 (2020)

    Article  CAS  Google Scholar 

  14. H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang, W. Shang, F. Yang, J. Yang, Z. Du, Z.L. Wang, High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits. Adv. Func. Mater. 28, 1805216 (2018)

    Article  Google Scholar 

  15. W. Tang, T. Zhou, C. Zhang, F.R. Fan, C.B. Han, Z.L. Wang, A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology 25, 225402 (2014)

    Article  Google Scholar 

  16. N. Soin, P. Zhao, K. Prashanthi, J. Chen, P. Ding, E. Zhou, T. Shah, S.C. Ray, C. Tsonos, T. Thundat, E. Siores, J. Luo, High performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDF-ZnSnO3) and polyamide-6 (PA6). Nano Energy 30, 470–480 (2016)

    Article  CAS  Google Scholar 

  17. X. Gao, M. Zheng, X. Yan, J. Fu, M. Zhu, Y. Hou, The alignment of BCZT particles in PDMS boosts the sensitivity and cycling reliability of a flexible piezoelectric touch sensor. J. Mater. Chem. C 7, 961–967 (2019)

    Article  CAS  Google Scholar 

  18. J. Fu, Y. Hou, X. Gao, M. Zheng, M. Zhu, Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density. Nano Energy 52, 391–401 (2018)

    Article  CAS  Google Scholar 

  19. X. Chen, X. Li, J. Shao, N. An, H. Tian, C. Wang, T. Han, L. Wang, B. Lu, High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 13, 1604245 (2017)

    Article  Google Scholar 

  20. N.P.M.J. Raj, K.S. Abisegapriyan, G. Khandelwal, N.R. Alluri, S.J. Kim, A lead-free ferroelectric Bi0.5Na0.5TiO3 based flexible, lightweight nanogenerator for motion monitoring applications. Sustain. Energy Fuels 4, 5636–5644 (2020)

    Article  Google Scholar 

  21. N.P.M.J. Raj, G. Khandelwal, S.J. Kim, 0.8BNT-0.2BKT ferroelectric-based multimode energy harvester for self-powered body motion sensors. Nano Energy 83, 105848 (2021)

    Article  Google Scholar 

  22. L. Gao, X. Chen, S. Lu, H. Zhou, W. Xie, J. Chen, M. Qi, H. Yu, X. Mu, Z.L. Wang, Y. Yang, Enhancing the output performance of triboelectric nanogenerator via grating-electrode-enabled surface plasmon excitation. Adv. Energy Mater. 9, 1902725 (2019)

    Article  CAS  Google Scholar 

  23. H. Wang, Z. Fan, T. Zhao, J. Dong, S. Wang, Y. Wang, X. Xiao, C. Liu, X. Pan, Y. Zhao, M. Xu, Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety. Nano Energy 84, 105920 (2021)

    Article  CAS  Google Scholar 

  24. M. Salauddin, S.M.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park, H. Cho, P. Maharjan, T. Bhatta, J.Y. Park, A novel MXene/Ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11, 2002832 (2020)

    Article  Google Scholar 

  25. W.T. Cao, H. Ouyang, W. Xin, S. Chao, C. Ma, Z. Li, F. Chen, M.G. Ma, A stretchable highoutput triboelectric nanogenerator improved by mxene liquid electrode with high electronegativity. Adv. Funct. Mater. 30, 2004181 (2020)

    Article  CAS  Google Scholar 

  26. S.H. Ji, W. Lee, J.S. Yun, All-in-one piezo-triboelectric energy harvester module based on piezoceramic nanofibers for wearable devices. ACS Appl. Mater. Interfac. 12, 18609–18616 (2020)

    Article  CAS  Google Scholar 

  27. M. Chandrasekhar, P. Kumar, Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 5574–5580 (2015)

    Article  CAS  Google Scholar 

  28. R. Li, Y. Pu, Q. Zhang, W. Wang, J. Li, X. Du, M. Chen, X. Zhang, Z. Sun, The relationship between enhanced dielectric property and structural distortion in Ca doped Ba2NaNb5O15 tungsten bronze ceramics. J. Eur. Ceram. Soc. 40, 4509–4516 (2020)

    Article  CAS  Google Scholar 

  29. W. Seung, H.-J. Yoon, T.Y. Kim, H. Ryu, J. Kim, J.-H. Lee, J.H. Lee, S. Kim, Y.K. Park, Y.J. Park, S.-W. Kim, Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 7, 1600988 (2017)

    Article  Google Scholar 

  30. M.P. Kim, D.S. Um, Y.E. Shin, H. Ko, High-performance triboelectric devices via dielectric polarization: a review. Nanoscale Res. Lett. 16, 35 (2021)

    Article  CAS  Google Scholar 

  31. J. Shao, D. Liu, M. Willatzen, Z.L. Wang, Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. Appl. Phys. Rev. 7, 011405 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant No. 52062007), Guangxi Nature Science Foundation (Grant No. 2021GXNSFAA220020), Guangxi Key Laboratory of Information Materials (Grant No. 191023-Z).

Funding

National Nature Science Foundation of China,Grant No. 52062007, Jiwen Xu,Guangxi Nature Science Foundation,Grant No. 2021GXNSFAA220020, Jiwen Xu,Guangxi Key Laboratory of Information Materials,Grant No. 191023-Z, Jiwen Xu

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. CX and Yu: Material preparation, data collection were analyzed. CX and Yu: The first draft was written. JW and Xu: The review and editing were done. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jiwen Xu or Ling Yang.

Ethics declarations

Conflict of interest

I confirm that this manuscript is the author’s original work, The article has been written by the stated authors who are all aware of its content and approve its submission, The article has not been published previously, The article is not under consideration for publication elsewhere, No conflict of interest exists, If accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Xu, J., Yang, T. et al. An enhanced nano-energy harvesting device by hybrid piezoelectric/triboelectric composites. J Mater Sci: Mater Electron 33, 22588–22598 (2022). https://doi.org/10.1007/s10854-022-09037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09037-4

Navigation