Skip to main content

Advertisement

Log in

Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer dielectrics have received increasing attention owing to their wide applications in electrical, microelectronic and energy storage fields. However, it remains a challenging to prepare polymer dielectrics with a high dielectric constant (ε) but low dissipation factor (tanδ). In this work, conductive molybdenum (Mo) particles were encapsulated by a thin layer of semi-conductive molybdenum trioxide (MoO3) with a wide bandgap of 3.28 eV via a facile thermal calcination way under air, and the gained core–shell structured Mo@MoO3 particles were composited with poly(vinylidene fluoride) (PVDF) to generate morphology-controllable high-ε but low loss composites. The large ε can be realized in the PVDF composites with the Mo@MoO3, and both the electric conductivity and tanδ of the composites are significantly restrained to rather low levels even at high filler loadings, and apparently decrease with increasing the MoO3’ shell thickness. The significantly ameliorated dielectric performances can be ascribed to the presence of MoO3 interlayer preventing the Mo particles from direct contact with each other and simultaneously hindering the long-range electron migration. The developed Mo@MoO3/PVDF composites with a high ε but low loss are great potential applications for electrical industries and microelectronic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H. Luo, C. Ma, X.F. Zhou, S. Chen, D. Zhang, Interfacial design in dielectric nanocomposite using liquid crystalline polymer. Macromolecules 50(13), 5132–5137 (2017)

    Article  CAS  Google Scholar 

  2. H. Luo, X.F. Zhou, C. Ellingford, Y. Zhang, S. Chen, H.C. Zhou, D. Zhang, C.R. Bowen, C.Y. Wan, Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48(16), 4424–4465 (2019)

    Article  CAS  Google Scholar 

  3. W.Y. Zhou, Y.J. Kou, M.X. Yuan, B. Li, H.W. Cai, Z. Li, F.X. Chen, X.R. Liu, G.H. Wang, Q.G. Chen, Z.M. Dang, Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos. Sci. Technol. 181, 107686 (2019)

    Article  CAS  Google Scholar 

  4. X. Xie, C. Yang, X.D. Qi, J.H. Yang, Z.W. Zhou, Y. Wang, Constructing polymeric interlayer with dual effects toward high dielectric constant and low dielectric loss. Chem. Eng. J. 366, 378–389 (2019)

    Article  CAS  Google Scholar 

  5. M. Yuan, B. Li, S. Zhang, R. Rajagopalan, M.T. Lanagan, Thermally-stable low-loss polymer dielectrics enabled by attaching crosslinkable antioxidant to polypropylene. ACS Appl. Polym. Mater. 2(3), 1356–1368 (2020)

    Article  CAS  Google Scholar 

  6. W.Y. Zhou, Y. Zhang, J.J. Wang, H. Li, W.H. Xu, B. Li, L.Q. Chen, Q. Wang, Lightweight porous polystyrene with high thermal conductivity by constructing 3D interconnected network of boron nitride nanosheets. ACS Appl. Mater. Interfaces 12(41), 46767–46778 (2020)

    Article  CAS  Google Scholar 

  7. P. Wang, X.M. Zhang, W. Duan, W. Teng, Y.B. Liu, Q. Xie, Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin. J. Chem. 39(5), 1153–1158 (2021)

    Article  CAS  Google Scholar 

  8. Z.D. Wang, G.D. Meng, L.L. Wang, L.L. Tian, S.Y. Chen, G.L. Wu, B.K. Bo, Y.H. Cheng, Simultaneously enhanced dielectric properties and through plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  9. Z.D. Wang, X.Z. Wang, S.L. Wang, J.Y. He, T. Zhang, J. Wang, G.L. Wu, Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/Epoxy composites. Nanomaterials 11(8), 1898 (2021)

    Article  CAS  Google Scholar 

  10. J.W. Zha, M.S. Zheng, B.H. Fan, Z.M. Dang, Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89, 106438-1–20 (2021)

    Article  Google Scholar 

  11. S.H. Kim, H.S. Kang, E.H. Sohn, B.J. Chang, I.J. Park, S.G. Lee, Analyses of low-temperature transport and thermoelectric properties of polycrystalline undopedn-ZrNiSn. ACS Appl. Energy Mater. 3(9), 8937–8945 (2020)

    Article  CAS  Google Scholar 

  12. J.H. Ren, Z.Y. Wang, P. Xu, C. Wang, F. Gao, D.C. Zhao, S.P. Liu, H. Yang, D. Wang, C.M. Niu, Y.S. Zhu, Y.T. Wu, X. Liu, Z.L. Wang, Y. Zhang, Porous Co2VO4 nano diskasa high energy and fast-charging anode fortieth um-ion batteries. Nano-Micro Lett. 14, 5 (2022)

    Article  CAS  Google Scholar 

  13. J.W. Ren, Q.H. Li, L. Yan, L.H. Jia, X.H. Huang, L.H. Zhao, Q.H. Ran, M.L. Fu, Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater. Des. 191, 108663 (2020)

    Article  CAS  Google Scholar 

  14. L.H. Zhao, L. Yan, C.G. Wei, Q.H. Li, X.L. Huang, Z.L. Wang, M.L. Fu, J.W. Ren, Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. J. Phys. Chem. C 124(23), 12723–12733 (2020)

    Article  CAS  Google Scholar 

  15. L.H. Zhao, C.J. Liao, Y. Liu, X.L. Huang, W.J. Ning, Z. Wang, L.C. Jia, J.W. Ren, A combination of aramid nanofiber and silver nanoparticle decorated boron nitride for the preparation of a composite film with superior thermally conductive performance. Compos. Interfaces 29, 447–463 (2021)

    Article  Google Scholar 

  16. L.C. Jia, Y.F. Jin, J.W. Ren, L.H. Zhao, D.X. Yan, Z.M. Li, Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J. Mater. Chem. C 9(8), 2904–2911 (2021)

    Article  CAS  Google Scholar 

  17. G.R. Chen, X. Wang, J.Q. Lin, W.L. Yang, H.D. Li, Y.N. Wen, L.D. Li, Z.C. Jiang, Q.Q. Lei, Nano-KTN@Ag/PVDF composite films with high permittivity and low dielectric loss by introduction of designed KTN/Ag core/shell nanoparticles. J. Mater. Chem. C 4(34), 8070–8076 (2016)

    Article  CAS  Google Scholar 

  18. X. Lu, W. Deng, J.D. Wei, Y.H. Wan, J.J. Zhang, L. Zhang, L. Jin, Z.Y. Cheng, Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Compos. B. Eng. 224, 109195 (2021)

    Article  CAS  Google Scholar 

  19. B. Li, P.I. Xidas, K.S. Triantafyllidis, E. Manias, Effect of crystal orientation and nanofiller alignment on dielectric breakdown of polyethylene/montmorillonite nanocomposites. Appl. Phys. Lett. 111(8), 082906 (2017)

    Article  Google Scholar 

  20. B. Li, M.X. Yuan, S.H. Zhang, R. Ramakrishnan, T.L. Michael, Abnormal high voltage resistivity of polyvinylidene fluoride and implications for applications in high energy density film capacitors. Appl. Phys. Lett. 113(19), 193903 (2018)

    Article  Google Scholar 

  21. B. Li, G.F. Salcedo, P.I. Xidas, E. Manias, Improving electrical breakdown strength of polymer nanocomposites by tailoring hybrid-filler structure for high-voltage dielectric applications. ACS Appl. Nano Mater. 1(9), 4401–4407 (2018)

    Article  CAS  Google Scholar 

  22. B. Li, P.I. Xidas, E. Manias, High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Appl. Nano Mater. 1(7), 3520–3530 (2018)

    Article  CAS  Google Scholar 

  23. Y.J. Kou, W.Y. Zhou, X. Li, Z.J. Wang, Y. Li, H.W. Cai, D.F. Liu, F.X. Chen, G.H. Wang, Z.M. Dang, Surface modification of GO by PDA for dielectric material with well-suppressed dielectric loss. High Perf. Polym. 31(6), 1183–1194 (2019)

    Article  CAS  Google Scholar 

  24. T. Li, W.Y. Zhou, Y. Li, D. Cao, Y. Wang, G.Z. Cao, X.R. Liu, H.W. Cai, Z.M. Dang, Synergy improvement of dielectric properties and thermal conductivity in PVDF composites with core-shell structured Ni@SiO2. J. Mater. Sci. Mater. Electron. 32(4), 4076–4089 (2021)

    Article  CAS  Google Scholar 

  25. W.Y. Zhou, T. Li, M.X. Yuan, B. Li, S.L. Zhong, Z. Li, X.R. Liu, J.J. Zhou, Y. Wang, H.W. Cai, Z.M. Dang, Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Mater. 42, 1–11 (2021)

    Article  Google Scholar 

  26. J.W. Zha, S.C. Yao, Y. Qiu, M.H. Zheng, Z.M. Dang, Enhanced dielectric properties and energy storage of the sandwich-structured poly(vinylidene fluoride-cohexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres. IET Nanodielectr. 2(3), 103–108 (2019)

    Article  Google Scholar 

  27. X. Lu, L. Zhang, Y. Tong, Z.Y. Cheng, BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Compos. B. Eng. 168, 34–43 (2019)

    Article  CAS  Google Scholar 

  28. X. Lu, X.W. Zou, J.L. Shen, L. Zhang, L. Jin, Z.Y. Cheng, High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 70, 104551 (2020)

    Article  CAS  Google Scholar 

  29. Y.C. Li, X.Q. Bi, S.S. Wang, Y.H. Zhan, H.Y. Liu, Y.W. Mai, C.Z. Liao, Z.G. Lu, Y.Z. Liao, Core-shell structured polyethylene glycol functionalized graphene for energy-storage polymer dielectrics: combined mechanical and dielectric performances. Compos. Sci. Technol. 199, 108341 (2020)

    Article  CAS  Google Scholar 

  30. D.Y. Shen, M.J. Wang, Y.M. Wu, Z.D. Liu, Y. Cao, T. Wang, X.F. Wu, Q.T. Shi, K.W. Chee, W. Dai, H. Bai, D. Dai, J.L. Lyu, N. Jiang, C.T. Lin, J.H. Yu, Enhanced thermal conductivity of epoxy composites with core-shell SiC@ SiO2 nanowires. High Voltage 2(3), 154–160 (2017)

    Article  Google Scholar 

  31. S.L. Zhong, Z.M. Dang, W.Y. Zhou, H.W. Cai, Past and future on nanodielectrics. IET Nanobiotechnol. 1(1), 41–47 (2018)

    Google Scholar 

  32. W.Y. Zhou, F. Zhang, M.X. Yuan, B. Li, J.D. Peng, Y.Q. Lv, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, Improved dielectric properties and thermal conductivity of PVDF composites filled with core–shell structured Cu@CuO particles. J. Mater. Sci.: Mater. Electron. 30(20), 18350–18361 (2019)

    CAS  Google Scholar 

  33. W.Y. Zhou, X. Li, F. Zhang, C.H. Zhang, Z. Li, F.X. Chen, H.W. Cai, X.R. Liu, Q.G. Chen, Z.M. Dang, Concurrently enhanced dielectric properties and thermal conductivity in PVDF composites with core-shell structured β-SiCw@SiO2 whiskers. Compos. Part A Appl. Sci. Manuf. 137, 106021 (2020)

    Article  CAS  Google Scholar 

  34. W.Y. Zhou, Y. Gong, L.T. Tu, X. Li, W. Zhao, J.T. Cai, Y.T. Zhang, A.N. Zhou, Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. Alloys Compd. 693, 1–8 (2017)

    Article  CAS  Google Scholar 

  35. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic–inorganic hybrid perovskites [(NH3)2(CH2)3] CuCl4 and [(NH3)2(CH2)4] CuCl2Br 2. Phys. Status Solidi A 2100036, 1–9 (2021)

    Google Scholar 

  36. J.Y. Li, K. McPhedran, E. Szalinska, A.M. McLeod, S.P. Bhavsar, J. Bohr, A. Grgicak-Mannion, K. Drouillard, Characterizing polychlorinated biphenyl exposure pathways from sediment and water in aquatic life using a food web bioaccumulation model. Integr. Environ. Assess. Manag. 398–411, 1–14 (2019)

    Google Scholar 

  37. A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 77(11), 6005–6016 (2020)

    Article  CAS  Google Scholar 

  38. S.S. El-Khiyami, R.S. Hafez, Dielectric study and Cole-Cole plots of poly(methyl methacrylate) doped with nanostructured metal oxides. J. Polym. Res 28(10), 1–19 (2021)

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 51937007), Shaanxi Provincial Natural Science Foundation, China (No. 2022JM-186), and acknowledge the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. WZ, TL, JZ and TY participated in the material preparation, data collection and analysis. WZ, DZ and WP carried out the study and collected important background information. Characterization and related discussion were performed by HW, XZ, JL and JL. Funding acquisition and Project administration were performed by WZ, DZ. The first draft of the manuscript was written by WP and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Wenying Zhou or Dongli Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article. Authors are responsible for correctness of the statements provided in the manuscript. See also Authorship Principles. The Editor-in-Chief reserves the right to reject submissions that do not meet the guidelines described in this section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Zhou, W., Li, T. et al. Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties. J Mater Sci: Mater Electron 33, 14735–14753 (2022). https://doi.org/10.1007/s10854-022-08393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08393-5

Navigation