Skip to main content
Log in

Synthesis and characterization of sol–gel derived LaFe0.5Mn0.5O3 perovskite powders for dye-sensitized solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, structural, microstructural, thermal, magnetic and optical properties of LaFe0.5Mn0.5O3 prepared perovskite powders were exclusively compared for processing temperatures for applications of dye-sensitized solar cells. In this framework, LaFe0.5Mn0.5O3 perovskite powders were synthesized with the sol–gel method at 500 °C and 850 °C (according to DTA/TG results). They were characterized through DTA/TGA (Thermogravimetric and Differential Thermal Analysis), FTIR (Fourier Transformed Infrared Spectroscopy), XRD (X-Ray Diffractometer), XPS (X-Ray Photoelectron Spectroscopy), PSA (Particle Size Analysis), SEM (Scanning Electron Microscopy), VSM (Vibrating Sample Magnetometer) and UV–Vis Spectrometer. In line with the obtained results, ferroelectric perovskite powders were successfully produced. These powders have crystallite sizes of 27.38–35.74 nm, bandgap values of 1.19–0.93 eV, particle sizes of 28–358 nm and ferromagnetic properties. In addition to the effect of synthesis temperature on LaFe0.5Mn0.5O3 synthesis with these characterization processes, it was found that the production of sustainable and applicable dye-sensitized solar cells using LaFe0.5Mn0.5O3 powders can be useful as innovative and futuristic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasheets were generated and analyzed during the current study.

References

  1. W. Azouzi, W. Sigle, H. Labrim, M. Benaissa, Sol–gel synthesis of nanoporous LaFeO3 powders for solar applications. Mater. Sci. Semicond. Process. 104, 104682 (2019). https://doi.org/10.1016/j.mssp.2019.104682

    Article  CAS  Google Scholar 

  2. S. Guan, H. Yang, X. Sun, T. Xian, Preparation and promising application of novel LaFeO3/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes. Opt. Mater. (Amst.) 100, 109644 (2020). https://doi.org/10.1016/j.optmat.2019.109644

    Article  CAS  Google Scholar 

  3. D. ÇobanÖzkan, A. Türk, E. Çelik, Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders. J. Mater. Sci. 31, 22789–22809 (2020). https://doi.org/10.1007/s10854-020-04803-8

    Article  CAS  Google Scholar 

  4. D. ÇobanÖzkan, A. Türk, E. Celik, Synthesis and characterizations of LaMnO3 perovskite powders using sol–gel method. J. Mater. Sci. 32, 15544–15562 (2021). https://doi.org/10.1007/s10854-021-06104-0

    Article  CAS  Google Scholar 

  5. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic-inorganic hybrid perovskites [(NH3)2(CH2)3]CuCl4 and [(NH3)2(CH2)4]CuCl2Br2. Phys. Stat. Solidi (A) (2021). https://doi.org/10.1002/pssa.202100036

    Article  Google Scholar 

  6. M. Vučinić-Vasić, V. Spasojevic, A. Kapor, Investigation of nanocrystalline phases in Li–La–Fe–O system formed by the decomposition of acetylacetonato complexes. J. Alloys Compd. 428, 322–326 (2007). https://doi.org/10.1016/j.jallcom.2006.03.042

    Article  CAS  Google Scholar 

  7. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2836802

    Article  Google Scholar 

  8. N.T. Thuy, D. Le Minh, Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng. (2012). https://doi.org/10.1155/2012/380306

    Article  Google Scholar 

  9. E. Hernandez, V. Sagredoa, G.E. Delgadob, Synthesis and magnetic characterization of LaMnO3 nanoparticles. Rev Mex Fısica 61, 166–169 (2015)

    CAS  Google Scholar 

  10. E. Cao, Y. Qin, T. Cui, L. Sun, W. Hao, Y. Zhang, Influence of Na doping on the magnetic properties of LaFeO3 powders and dielectric properties of LaFeO3 ceramics prepared by citric sol–gel method. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.03.119

    Article  Google Scholar 

  11. Q. Lin, J. Lin, X. Yang, Y. He, L. Wang, J. Dong, The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nanocrystals. Ceram. Int. 45, 3333–3340 (2019). https://doi.org/10.1016/j.ceramint.2018.10.246

    Article  CAS  Google Scholar 

  12. L. Bian, M. Song, T. Zhou, X. Zhao, Q. Dai, Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2. J. Rare Earths 27, 461–468 (2009). https://doi.org/10.1016/S1002-0721(08)60270-7

    Article  Google Scholar 

  13. S. Gong, Z. Xie, W. Li, X. Wu, N. Han, Y. Chen, Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Appl. Catal. B 241, 578–587 (2019). https://doi.org/10.1016/j.apcatb.2018.09.041

    Article  CAS  Google Scholar 

  14. W. Li, F. Yang, P. Xiong, Y. Jia, J. Liu, X. Yan, X. Chen, Effect of Bi-doping on the electrocatalytic properties of LaFeO3 powders prepared by sol–gel method. J. Mater. Sci. 54, 7460–7468 (2019). https://doi.org/10.1007/s10853-019-03443-6

    Article  CAS  Google Scholar 

  15. O. Wiranwetchayan, S. Promnopas, S. Phadungdhitidhada, A. Phuruangrat, T. Thongtem, P. Singjai, S. Thongtem, Characterization of perovskite LaFeO3 synthesized by microwave plasma method for photocatalytic applications. Ceram. Int. 45, 4802–4809 (2019). https://doi.org/10.1016/j.ceramint.2018.11.175

    Article  CAS  Google Scholar 

  16. Y. Chen, J. Fan, T. Liu, J. Wang, M. Zhang, C. Zhang, Theoretical study on the effect of an O vacancy on the hydrogen storage properties of the LaFeO3 (010) surface. Int. J. Hydrogen Energy 4, 5374–5381 (2019). https://doi.org/10.1016/j.ijhydene.2018.09.097

    Article  CAS  Google Scholar 

  17. H. Huang, Q. Liu, B. Lu, X. Wang, J. Hu, LaMnO3-diamond composites as efficient oxygen reduction reaction catalyst for Zn-air battery. Diamond Relat. Mater. 19, 199–206 (2019). https://doi.org/10.1016/j.diamond.2018.11.024

    Article  CAS  Google Scholar 

  18. J. Hu, L. Zhang, B. Lu, X. Wang, H. Huang, LaMnO3 nanoparticles supported on N doped porous carbon as e ffi cient photocatalyst. Vacuum 159, 59–68 (2019). https://doi.org/10.1016/j.vacuum.2018.10.021

    Article  CAS  Google Scholar 

  19. F. Li, Z. Wang, A. Wang, S. Wu, L. Zhang, N-type LaFe1–xMnxO3 prepared by sol–gel method for gas sensing. J. Alloys Compd. 816, 3–7 (2020). https://doi.org/10.1016/j.jallcom.2019.152647

    Article  CAS  Google Scholar 

  20. T. Shou, Y. Li, M.T. Bernards, C. Becco, G. Cao, Y. Shi, Y. He, Degradation of gas-phase o-xylene via combined non-thermal plasma and Fe doped LaMnO3 catalysts: Byproduct control. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121750

    Article  Google Scholar 

  21. N. Geetha, V. Senthil Kumar, D. Prakash, Synthesis and characterization of LaMn1xFexO3 (x = 0, 0.1, 0.2) by coprecipitation route. J. Phys. Chem. Biophys. 8, 1–6 (2018). https://doi.org/10.4172/2161-0398.1000273

    Article  CAS  Google Scholar 

  22. L. Nejati Moghadam, Z. RashidiRanjbar, Cost-efficient solar cells using nanocrystalline perovskite La(Fe and Mn)O3 and candle soot: theory and experiment. J. Alloys Compd. 785, 117–124 (2019). https://doi.org/10.1016/j.jallcom.2019.01.068

    Article  CAS  Google Scholar 

  23. G. Deng, Y. Chen, M. Tao, C. Wu, X. Shen, H. Yang, M. Liu, Electrochemical properties and hydrogen storage mechanism of perovskite-type oxide LaFeO3 as a negative electrode for Ni/MH batteries. Electrochim. Acta 55, 1120–1124 (2010). https://doi.org/10.1016/j.electacta.2009.09.078

    Article  CAS  Google Scholar 

  24. A. Moghtada, R. Ashiri, Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method. Ultrason. Sonochem. 33, 141–149 (2016). https://doi.org/10.1016/j.ultsonch.2016.05.002

    Article  CAS  Google Scholar 

  25. B.A.I. Shouli, S.H.I. Bingjie, M.A. Lijing, Y. Pengcheng, L.I.U. Zhiyong, L.I. Dianqing, C. Aifan, Synthesis of LaFeO3 catalytic materials and their sensing properties. Sci. China Ser. B-Chem. (2009). https://doi.org/10.1007/s11426-009-0289-3

    Article  Google Scholar 

  26. G.S. Lotey, N.K. Verma, Gd-doped BiFeO 3 nanoparticles—a novel material for highly efficient dye-sensitized solar cells. Chem. Phys. Lett. 574, 71–77 (2013). https://doi.org/10.1016/j.cplett.2013.04.046

    Article  CAS  Google Scholar 

  27. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. (2020). https://doi.org/10.1007/s11051-020-05001-7

    Article  Google Scholar 

  28. A. Daundkar, S.N. Kale, S.P. Gokhale, V. Ravi, A low temperature route to prepare LaMnO3. Mater. Today 60, 1213–1214 (2006). https://doi.org/10.1016/j.matlet.2005.11.002

    Article  CAS  Google Scholar 

  29. C. Zhang, Y. Guo, Y. Guo, G. Lu, A. Boreave, L. Retailleau, A. Baylet, A. Giroir-fendler, LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl. Catal. B Environ. 148–149, 490–498 (2014). https://doi.org/10.1016/j.apcatb.2013.11.030

    Article  CAS  Google Scholar 

  30. A. Giroir-fendler, M. Alves-fortunato, M. Richard, C. Wang, J. Antonio, S. Gil, C. Zhang, F. Can, N. Bion, Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion. Appl. Catal. B Environ. 180, 29–37 (2016). https://doi.org/10.1016/j.apcatb.2015.06.005

    Article  CAS  Google Scholar 

  31. O.P. Taran, A.B. Ayusheev, O.L. Ogorodnikova, I.P. Prosvirin, L.A. Isupova, V.N. Parmon, Perovskite-like catalysts LaBO3 ( B = Cu, Fe, Mn Co, Ni ) for wet peroxide oxidation of phenol. Appl. Catal. B Environ. 180, 86–93 (2016). https://doi.org/10.1016/j.apcatb.2015.05.055

    Article  CAS  Google Scholar 

  32. M. Shaterian, M. Enhessari, D. Rabbani, M. Asghari, Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles. Appl. Surf. Sci. 318, 213–217 (2014). https://doi.org/10.1016/j.apsusc.2014.03.087

    Article  CAS  Google Scholar 

  33. W. Haron, A. Wisitsoraat, S. Wongnawa, Nanostructured perovskite oxides—LaMO3 (M = Al Co, Fe) prepared by co-precipitation method and their ethanol-sensing characteristics. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.01.013

    Article  Google Scholar 

  34. M. Idrees, M. Nadeem, S.A. Siddiqi, R. Ahmad, A. Hussnain, M. Mehmood, The organic residue and synthesis of LaFeO3 by combustion of citrate and nitrate precursors. Mater. Chem. Phys. (2015). https://doi.org/10.1016/j.matchemphys.2015.06.039

    Article  Google Scholar 

  35. D. Sánchez-Rodríguez, H. Wada, S. Yamaguchi, J. Farjas, H. Yahiro, Synthesis of LaFeO3 perovskite-type oxide via solid-state combustion of a cyano complex precursor: the effect of oxygen diffusion. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2016.11.134

    Article  Google Scholar 

  36. E.M. Kostyukhin, A.L. Kustov, L.M. Kustov, One-step hydrothermal microwave-assisted synthesis of LaFeO3 nanoparticles. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.04.155

    Article  Google Scholar 

  37. A. Ashok, A. Kumar, R.R. Bhosale, F. Almomani, S.S. Malik, S. Suslov, F. Tarlochan, Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J. Electroanal. Chem. 809, 22–30 (2018). https://doi.org/10.1016/j.jelechem.2017.12.043

    Article  CAS  Google Scholar 

  38. A. Rezanezhad, E. Rezaie, L. Saleh, A. Hajalilou, E. Abouzari-lotf, N. Arsalani, Outstanding supercapacitor performance of Nd e Mn co-doped perovskite LaFeO3 @ nitrogen-doped graphene oxide nanocomposites. Electrochim. Acta 335, 135699 (2020). https://doi.org/10.1016/j.electacta.2020.135699

    Article  CAS  Google Scholar 

  39. T. Phan, P.Q. Thanh, P.D.H. Yen, P. Zhang, T.D. Thanh, S.C. Yu, Ferromagnetic short-range order and magnetocaloric effect. Solid State Commun. 167, 49–53 (2013). https://doi.org/10.1016/j.ssc.2013.06.009

    Article  CAS  Google Scholar 

  40. J.P. Palakkal, R.S. Cheriyedath, P.N. Lekshmi, M. Valant, Large positive and negative magnetodielectric coupling in Fe half-doped. J. Magn. Magn. Mater. 474, 183–186 (2019). https://doi.org/10.1016/j.jmmm.2018.10.121

    Article  CAS  Google Scholar 

  41. Q. Peng, B. Shan, Y. Wen, R. Chen, Enhanced charge transport of LaFeO3 via transition metal (Mn Co, Cu) doping for visible light photoelectrochemical water oxidation. Int. J. Hydrogen Energy 40, 15423–15431 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.072

    Article  CAS  Google Scholar 

  42. J. Jeong, C. Song, K. Kim, W. Sigmund, J. Yoon, Effect of Mn doping on particulate size and magnetic properties of LaFeO3 nano fiber synthesized by electrospinning. J. Alloys Compd. 749, 599–604 (2018). https://doi.org/10.1016/j.jallcom.2018.03.352

    Article  CAS  Google Scholar 

  43. N.I. Beedri, P.K. Baviskar, V.P. Bhalekar, C.V. Jagtap, Inamuddin, A.M. Asiri, S.R. Jadkar, H.M. Pathan, N3-Sensitized TiO2/Nb2O5: a novel bilayer structure for dye-sensitized solar-cell application. Phys. Status Solidi (A). (2018). https://doi.org/10.1002/pssa.201800236

    Article  Google Scholar 

  44. K.S. Pawar, P.K. Baviskar, Inamuddin, A.B. Nadaf, S. Salunke-Gawali, H.M. Pathan, Layer-by-layer deposition of TiO2–ZrO2 electrode sensitized with Pandan leaves: natural dye-sensitized solar cell. Mater Renew. Sustain. Energy. (2019). https://doi.org/10.1007/s40243-019-0148-x

    Article  Google Scholar 

  45. C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry Of Sol–Gel Processing (Academic Press, San Diego, 1990)

    Google Scholar 

  46. A.C. Pierre, Introduction to sol–gel processing (Springer, Boston, 1998). https://doi.org/10.1007/978-1-4615-5659-6

    Book  Google Scholar 

  47. J. Wang, X. Cao, S. Liu, Y. Guo, Z. Wang, X. Li, Y. Ren, Z. Xia, H. Wang, C. Liu, N. Wang, W. Jiang, W. Ding, Preparation, structural and sintering properties of AZO nanoparticles by sol–gel combustion method. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.068

    Article  Google Scholar 

  48. DC. Özkan, A. Türk, E. Celik, Sol–gel synthesis, characterization and microwave absorbing properties. Mater. Res. Bull. 47, 1961–1967 (2012). https://doi.org/10.1016/j.materresbull.2012.04.017

    Article  CAS  Google Scholar 

  49. K. Vojisavljević, P. Chevreux, J. Jouin, B. Malič, Characterization of the alkoxide-based sol–gel derived La9.33Si6O26 powder and ceramic. Acta Chim. Sloven. 61, 530–541 (2014)

    Google Scholar 

  50. X. Chen, J. Yu, S. Guo, S. Lu, Z. Luo, M. He, Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. J. Mater. Sci. 44, 1324–1332 (2009). https://doi.org/10.1007/s10853-009-3273-6

    Article  CAS  Google Scholar 

  51. P.V. Gosavi, R.B. Biniwale, Pure phase LaFeO 3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem. Phys. 119, 324–329 (2010). https://doi.org/10.1016/j.matchemphys.2009.09.005

    Article  CAS  Google Scholar 

  52. M. Yurddaskal, E. Celik, Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Compos. Struct. 183, 381–388 (2017). https://doi.org/10.1016/j.compstruct.2017.03.093

    Article  Google Scholar 

  53. E. Spahiu, ATR-FTIR evaluation of structural and functional changes on murine macrophage cells upon activation and suppression by immuno-therapeutic oligodeoxynucleotides, 2015.

  54. L. Lin, Z. Song, Z. Haider, X. Liu, W. Qiu, Enhanced As (III) removal from aqueous solution by Fe–Mn–La- impregnated biochar composites. Sci. Total Environ. 686, 1185–1193 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.480

    Article  CAS  Google Scholar 

  55. M. Sukumar, L.J. Kennedy, J.J. Vijaya, B. Al-Najar, M. Bououdina, Facile synthesis of Fe3+ doped La2CuO4/LaFeO3 perovskite nanocomposites: structural, optical, magnetic and catalytic properties. Mater. Sci. Semicond. Process. 100, 225–235 (2019). https://doi.org/10.1016/j.mssp.2019.04.049

    Article  CAS  Google Scholar 

  56. R. Shukla, R. Dhaka, S. Dash, S.C. Sahoo, B. Bahera, P.D. Babu, R. Choudhary, A. Kumar, Structural, dielectric and magnetic properties of Bi–Mn doped SmFeO3. Ceram. Int. 46, 8730–8744 (2020). https://doi.org/10.1016/j.ceramint.2019.12.112

    Article  CAS  Google Scholar 

  57. S.D.N.W.P. Utomo, A.M. Ilham, N. Khoiroh, H.F.G.P. Pasicakti, M.Z. Setyawati, Comparıson of La0.6Sr0.4Co0.2Fe0.8O3δ perovskıte synthesıs methods and theır effect on the partıcle size. Rasayan J. Chem. 12, 697–706 (2019)

    Article  CAS  Google Scholar 

  58. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012)

    Article  Google Scholar 

  59. H. Gao, C. Zheng, H. Yang, X. Niu, S. Wang, Construction of a CQDs/Ag3PO4/BiPO4 heterostructure photocatalyst with enhanced photocatalytic degradation of rhodamine b under simulated solar ırradiation. Micromachines 3, 557 (2019)

    Article  Google Scholar 

  60. R.G.H.A.J. Signorelli, X-ray photoelectron spectroscopy of various core levels of lanthanide ıons: the roles of monopole excitation and electrostatic coupling. Phys Rev. B. 8, 81–86 (1973)

    Article  CAS  Google Scholar 

  61. O.D. Dastjerdi, H. Shokrollahi, H. Yang, The enhancement of the Ce-solubility limit and saturation magnetization in Ce0.25BixPryY2.75-x-yFe5O12 garnet synthesized by the conventional ceramic method. Ceram. Int. 46, 2709–2723 (2020). https://doi.org/10.1016/j.ceramint.2019.09.261

    Article  CAS  Google Scholar 

  62. E.B. Simsek, Ö. Tuna, Z. Balta, Separation and Puri fi cation Technology Construction of stable perovskite-type LaFeO3 particles on polymeric resin with boosted photocatalytic Fenton-like deca ff eination under solar irradiation. Sep. Purif. Technol. 237, 116384 (2020). https://doi.org/10.1016/j.seppur.2019.116384

    Article  CAS  Google Scholar 

  63. J.J. Duan, R.L. Zhang, J.J. Feng, L. Zhang, Q.L. Zhang, A.J. Wang, Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 581, 774–782 (2021). https://doi.org/10.1016/j.jcis.2020.08.005

    Article  CAS  Google Scholar 

  64. A. Kumar, M. Chandel, A. Sharma, M. Thakur, A. Kumar, D. Pathania, L. Singh, Robust visible light active PANI/LaFeO3/CoFe2O4 ternary heterojunction for the photo-degradation and mineralization of pharmaceutical effluent: Clozapine. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.106159

    Article  Google Scholar 

  65. P.W. Menezes, A. Indra, V. Gutkin, M. Driess, Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese. Chem. Commun. 53, 8018–8021 (2017). https://doi.org/10.1039/c7cc03749j

    Article  CAS  Google Scholar 

  66. A.-M. Herman Son, Microstructure of protein gels related to functionality, in Protein Structure-Function Relationships in Foods. ed. by R.Y. Yada, R.L. Jackman, J.L. Smith (Springer, New York, 1994), p. 202

    Google Scholar 

  67. F.J. Maldonado-Hódar, H. Jirglová, S. Morales-Torres, A.F. Pérez-Cadenas, Influence of surfactants on the physicochemical properties and catalytic behaviour of Mo-doped carbon xerogels. Catal. Today 301, 217–225 (2018). https://doi.org/10.1016/j.cattod.2017.01.030

    Article  CAS  Google Scholar 

  68. I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M. Angel, A. Bonavita, G. Neri, S. Gianluca, LaFeO3 ceramics as selective oxygen sensors at mild temperature. Ceram. Int. 44, 4183–4189 (2018). https://doi.org/10.1016/j.ceramint.2017.11.221

    Article  CAS  Google Scholar 

  69. Ralf Rauer, Optical Spectroscopy of Strongly Correlated Transition-metal Oxides (Cuvillier Verlag, Hamburg, 2005)

    Google Scholar 

  70. T. Jia, Z. Zeng, H.Q. Lin, Y. Duan, P. Ohodnicki, First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La, Sr, B = Fe, Co) perovskites. RSC Adv. (2017). https://doi.org/10.1039/c7ra06542f

    Article  Google Scholar 

  71. Zetasizer Nano User Manual, Malvern Instruments Ltd., 2013., (n.d.).

  72. Y.T. O, J.B. Koo, K.J. Hong, J.S. Park, D.C. Shin, Effect of grain size on transmittance and mechanical strength of sintered alumina. Mater Sci. Eng. A. 374, 191–195 (2004). https://doi.org/10.1016/j.msea.2004.02.015

    Article  CAS  Google Scholar 

  73. V. Gruzdev, Ultrafast laser-induced modifications of energy bands of non-metal crystals. Proc. SPIE. (2009). https://doi.org/10.1117/12.836908

    Article  Google Scholar 

  74. J. Piprek, Introduction to physics and simulation. Semicond. Optoelectron. Devices (2013). https://doi.org/10.1016/B978-0-08-046978-2.50029-6

    Article  Google Scholar 

  75. S.P. Ghorpade, R.H. Krishna, R.M. Melavanki, V. Dubey, Effect of Eu3+ on optical and energy bandgap of SrY2O4 nanophosphors for FED applications. Optik 208, 164533 (2020). https://doi.org/10.1016/j.ijleo.2020.164533

    Article  CAS  Google Scholar 

  76. R. Köferstein, L. Jäger, S.G. Ebbinghaus, Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ionics 249–250, 1–5 (2013). https://doi.org/10.1016/j.ssi.2013.07.001

    Article  CAS  Google Scholar 

  77. D. Ramírez-ortega, I. González, R. Arroyo, Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity. Electrochim. Acta (2014). https://doi.org/10.1016/j.electacta.2014.06.060

    Article  Google Scholar 

  78. D. Ramírez-ortega, D. Guerrero-araque, D. Ramírez-ortega, P. Acevedo-peña, Interfacial charge-transfer process across ZrO2–TiO2 heterojunction and its impact on photocatalytic activity. J. Photochem. Photobiol. A: Chem. 335, 276–286 (2016). https://doi.org/10.1016/j.jphotochem.2016.11.030

    Article  CAS  Google Scholar 

  79. T. Vijayaraghavan, M. Bradha, P. Babu, K.M. Parida, G. Ramadoss, S. Vadivel, R. Selvakumar, A. Ashok, Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO3 nanocomposites. J. Phys. Chem. Solids 140, 109377 (2020). https://doi.org/10.1016/j.jpcs.2020.109377

    Article  CAS  Google Scholar 

  80. A.L. Gavin, G.W. Watson, Modelling the electronic structure of orthorhombic LaMnO3. Solid State Ionics 299, 13–17 (2017). https://doi.org/10.1016/j.ssi.2016.10.007

    Article  CAS  Google Scholar 

  81. Y. Kumar, R. Kumar, R.J. Choudhary, A. Thakur, A.P. Singh, Reduction in the tilting of oxygen octahedron and its effect on bandgap with La doping in SrSnO3. Ceram. Int. 46, 17569–17576 (2020). https://doi.org/10.1016/j.ceramint.2020.04.056

    Article  CAS  Google Scholar 

  82. M. Yousaf, M. Niaz, M.A.K.Y. Shah, S. Rauf, N. Mushtaq, A. Noor, M. Akbar, M. Afzal, B. Wang, Evaluation of rare earth (Yb, La ) doped (Sm3Fe5O12) garnet ferrite membrane for LT-SOFC. Int. J. Hydrogen Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.01.166

    Article  Google Scholar 

  83. O.F. de Lima, J.A.H. Coaquira, R.L. de Almeida, L.B. de Carvalho, S.K. Malik, Magnetic phase evolution in the LaMn1xFexO3+y system. J. Appl. Phys. (2012). https://doi.org/10.1063/1.3054323

    Article  Google Scholar 

  84. M. Purnachander, S. Musthafa, J.J. Wu, S. Anandan, Facile synthesis of perovskite LaFeO3 ferroelectric nanostructures for heavy metal ion removal applications. Mater. Chem. Phys. 232, 200–204 (2019). https://doi.org/10.1016/j.matchemphys.2019.04.086

    Article  CAS  Google Scholar 

  85. S. RamachandraRao, Emerging new technologies. Waste Manage. Ser. 7, 483–508 (2006). https://doi.org/10.1016/S0713-2743(06)80097-8

    Article  Google Scholar 

  86. F. Alan, M. Tan, R. Yilgin, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012). https://doi.org/10.1016/j.ceramint.2012.01.001

    Article  CAS  Google Scholar 

  87. K. Sebayang, D. Aryanto, S. Simbolon, C. Kurniawan, S.F. Hulu, T. Sudiro, M. Ginting, P. Sebayang, Effect of sintering temperature on the microstructure, electrical and magnetic properties of Zn0.98Mn0.02O material. IOP Conf. Ser.: Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/309/1/012119

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by Manisa Celal Bayar University, Scientific Research Projects Coordination Unit. Project Number: 2018-049 and Dokuz Eylul University, Center of Fabrication and Application of Electronic Materials.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Deniz Çoban Özkan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Consent was obtained from all authors prior to, during and now for submission.

Consent to publication

All the authors agree to publication of the manuscript in its current form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çoban Özkan, D., Türk, A. & Çelik, E. Synthesis and characterization of sol–gel derived LaFe0.5Mn0.5O3 perovskite powders for dye-sensitized solar cell applications. J Mater Sci: Mater Electron 33, 13698–13719 (2022). https://doi.org/10.1007/s10854-022-08304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08304-8

Navigation