Skip to main content
Log in

Synthesis of binary nanohybrid-based polygonal Pd nanoparticles for proficient photoelectrochemical oxidation of methanol and urea

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of high-performance electrocatalysts is critical for the electrooxidation of methanol and urea, but there are some potential challenges. A binary nanocomposite was created based on palladium nanoparticles (PdNPs), and the anchored gold solution (HAuCl4·3H2O) was deposited onto PdNPs via a one-step photodeposition technique. Otherwise, the as-prepared graphene was added to PdNPs using the hydrothermal route to exhibit the second nanocomposite Pd/graphene. Pd deformed into a polygonal shape in the presence of polyvinylpyrrolidone (PVP) as a capping agent. Throughout the photodeposition of Au on the surface of PdNPs, the surface plasmonic resonance (SPR) was observed near 523 nm, resulting in a significant decrease in the diameter size from 27m to 18.6 nm. The attenuation of photoluminescence intensity also demonstrated that Pd/graphene is more efficient for charge separation, which is favorably reflected in the efficiency of the single fuel cell. After adding Au and graphene to PdNPs, the surface roughness was improved. Besides, electrochemical data showed that Pd/graphene has superior mass-specific behavior equal to 76.96 mC/mg under visible light illumination rather than in the dark state (52 mC/mg) during methanol oxidation. Otherwise, the mass-specific activity of Pd/Au under such urea conditions has a value of 31.86 mC/mg. To avoid the harsh conditions and to depend on the obtained promising data, it can be concluded that such a preparation method is a reliable synthetic route for the production of a nanocomposite system for attaining maximum electrochemical oxidation of both methanol and urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not exist.

References

  1. J.N. Tiwari, R.N. Tiwari, G. Singh, K.S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2, 553–578 (2013)

    Article  CAS  Google Scholar 

  2. E. Contreras, C. Palacios, B. Huerta, S. Ahn, O. Vazquez-Mena, R.D. Cadena-Nava, G. Alonso-Nunez, O.E. Contreras, M.T. Oropeza-Guzman, J.M. Romo-Herrera, Anodes for direct alcohol fuel cells assisted by Plasmon accelerated electrochemical oxidation using gold nanoparticles decorated buckypapers. ACS Appl. Energy Mater. 3, 8755–8764 (2020)

    Article  CAS  Google Scholar 

  3. L. Brandão, J. Rodrigues, L.M. Madeira, A. Mendes, Methanol crossover reduction by Nafion modification with palladium composite nanoparticles: application to direct methanol fuel cells. Int. J. Hydrogen Energy 35, 11561–11567 (2010)

    Article  CAS  Google Scholar 

  4. A. Higareda, S. Kumar-Krishnan, A.F. García-Ruiz, J. Maya-Cornejo, J.L. Lopez-Miranda, D. Bahena, G. Rosas, R. Pérez, R. Esparza, Synthesis of Au@ Pt core—shell nanoparticles as efficient electrocatalyst for methanol electro-oxidation. Nanomaterials 9, 1644 (2019)

    Article  CAS  Google Scholar 

  5. A. Mezni, M.M. Ibrahim, M. El-Kemary, A.A. Shaltout, N.Y. Mostafa, J. Ryl, T. Kumeria, T. Altalhi, M.A. Amin, Cathodically activated Au/TiO2 nanocomposite synthesized by a new facile solvothermal method: An efficient electrocatalyst with Pt-like activity for hydrogen generation. Electrochim. Acta 290, 404–418 (2018)

    Article  CAS  Google Scholar 

  6. X. Wang, M. Sun, Y. Guo, J. Hu, M. Zhu, Three dimensional Pt island-on-Au architectures coupled with graphite carbon nitride nanosheets for effective photo-accelerated methanol electro-oxidation. J. Colloid Interface Sci. 558, 38–46 (2020)

    Article  CAS  Google Scholar 

  7. L.P.A. Guerrero-Ortega, E. Ramírez-Meneses, R. Cabrera-Sierra, L.M. Palacios-Romero, K. Philippot, C.R. Santiago-Ramírez, L. Lartundo-Rojas, A. Manzo-Robledo, Pd and Pd@ PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction. J. Mater. Sci. 54, 13694–13714 (2019)

    Article  CAS  Google Scholar 

  8. W. Ji, W. Qi, S. Tang, B. Huang, M. Wang, Y. Li, Y. Jia, Y. Pang, Synthesis of marks-decahedral Pd nanoparticles in aqueous solutions. Part. Part. Syst. Charact. 31, 851–856 (2014)

    Article  CAS  Google Scholar 

  9. Z. Yin, H. Zheng, D. Ma, X. Bao, Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J. Phys. Chem. C. 113, 1001–1005 (2009)

    Article  CAS  Google Scholar 

  10. Z. Li, J. Gao, X. Xing, S. Wu, S. Shuang, C. Dong, M.C. Paau, M.M.F. Choi, Synthesis and characterization of n-alkylamine-stabilized palladium nanoparticles for electrochemical oxidation of methane. J. Phys. Chem. C. 114, 723–733 (2010)

    Article  CAS  Google Scholar 

  11. C.K. Yee, R. Jordan, A. Ulman, H. White, A. King, M. Rafailovich, J. Sokolov, Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir 15, 3486–3491 (1999)

    Article  CAS  Google Scholar 

  12. W. Niu, Z.-Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst. Growth Des. 8, 4440–4444 (2008)

    Article  CAS  Google Scholar 

  13. I. Washio, Y. Xiong, Y. Yin, Y. Xia, Reduction by the end groups of poly (vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater. 18, 1745–1749 (2006)

    Article  CAS  Google Scholar 

  14. Y. Xiong, I. Washio, J. Chen, H. Cai, Z.-Y. Li, Y. Xia, Poly (vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22, 8563–8570 (2006)

    Article  CAS  Google Scholar 

  15. B. Zhang, F. Yang, H. Liu, L. Yan, W. Yang, C. Xu, S. Huang, Q. Li, W. Bao, B. Liu, H. Robatjazi, S.M. Bahauddin, C. Doiron, I. Thomann, Assembling graphene-encapsulated Pd/TiO2 nanosphere with hierarchical architecture for high-performance visible-light-assisted methanol electro-oxidation material. Nano Lett. 58, 19486–19494 (2019)

    CAS  Google Scholar 

  16. S. Kang, F. Xia, Z. Hu, W. Hu, Y. She, L. Wang, X. Fu, W. Lu, Platinum nanoparticles with TiO2–skin as a durable catalyst for photoelectrochemical methanol oxidation and electrochemical oxygen reduction reactions. Electrochim. Acta 343, 136119 (2020)

    Article  CAS  Google Scholar 

  17. X. Han, D. Wang, J. Huang, D. Liu, T. You, Ultrafast growth of dendritic gold nanostructures and their applications in methanol electro-oxidation and surface-enhanced Raman scattering. J. Colloid Interface Sci. 354, 577–584 (2011)

    Article  CAS  Google Scholar 

  18. M.M. Mohamed, M. Khairy, S. Eid, Surfactant-assisted formation of silver titanates as active catalysts for methanol electro-oxidation. Appl. Catal. A Gen. 547, 205–213 (2017)

    Article  CAS  Google Scholar 

  19. C. Wang, X.-G. Nie, Y. Shi, Y. Zhou, J.-J. Xu, X.-H. Xia, H.-Y. Chen, Direct plasmon-accelerated electrochemical reaction on gold nanoparticles. ACS Nano 11, 5897–5905 (2017)

    Article  CAS  Google Scholar 

  20. K. Shoueir, A. Mohanty, I. Janowska,  Industrial molasses waste in the performant synthesis of few-layer graphene and its Au/Ag nanoparticles nanocomposites. Photocatalytic and supercapacitance applications. J. Clean. Prod. 351, 131540 (2022)

    Article  CAS  Google Scholar 

  21. A.N. Emam, A.A. Mostafa, M.B. Mohamed, A.-S. Gadallah, M. El-Kemary, Enhancement of the collective optical properties of plasmonic hybrid carbon dots via localized surface plasmon. J. Lumin. 200, 287–297 (2018)

    Article  CAS  Google Scholar 

  22. C. Zhan, X.-J. Chen, J. Yi, J.-F. Li, D.-Y. Wu, Z.-Q. Tian, From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018)

    Article  Google Scholar 

  23. P.Y. You, S.K. Kamarudin, Recent progress of carbonaceous materials in fuel cell applications: an overview. Chem. Eng. J. 309, 489–502 (2017)

    Article  CAS  Google Scholar 

  24. B. Chokkiah, M. Eswaran, S.M. Wabaidur, Z.A. Alothman, P.-C. Tsai, V.K. Ponnusamy, R. Dhanusuraman, Novel PDPA-SiO2 nanosphericals network decorated graphene nanosheets composite coated FTO electrode for efficient electro-oxidation of methanol. Fuel 279, 118439 (2020)

    Article  CAS  Google Scholar 

  25. M.B. Askari, P. Salarizadeh, M. Seifi, S.M. Rozati, Ni/NiO coated on multi-walled carbon nanotubes as a promising electrode for methanol electro-oxidation reaction in direct methanol fuel cell. Solid State Sci. 97, 106012 (2019)

    Article  CAS  Google Scholar 

  26. X.-L. Sui, L.-M. Zhang, L. Zhao, D.-M. Gu, G.-S. Huang, Z.-B. Wang, Nitrogen-doped graphene aerogel with an open structure assisted by in-situ hydrothermal restructuring of ZIF-8 as excellent Pt catalyst support for methanol electro-oxidation. Int. J. Hydrogen Energy. 43, 21899–21907 (2018)

    Article  CAS  Google Scholar 

  27. H. Yang, L. Geng, Y. Zhang, G. Chang, Z. Zhang, X. Liu, M. Lei, Y. He, Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl. Surf. Sci. 466, 385–392 (2019)

    Article  CAS  Google Scholar 

  28. J.R. Rani, J. Oh, J. Park, J. Lim, B. Park, K. Kim, S.-J. Kim, S.C. Jun, Controlling the luminescence emission from palladium grafted graphene oxide thin films via reduction. Nanoscale 5, 5620–5627 (2013)

    Article  CAS  Google Scholar 

  29. Y. Xie, Z. Li, Y. Liu, Y. Ye, X. Zou, S. Lin, Plasmon enhanced bifunctional electro-photo catalytic properties of Pt-Au/graphene composites for methanol oxidation and oxygen reduction reaction. Appl. Surf. Sci. 508, 145161 (2020)

    Article  CAS  Google Scholar 

  30. H.S. Rady, Y.H. Elbashar, M. El-Kemary, Preparation of metallic nanoparticles and their graphene nanocomposites in organic medium using different light sources: a review. Nonlinear Opt. Quantum Opt. Concepts Mod. Opt. 52, 71–109 (2020)

  31. H. An, L. Pan, H. Cui, B. Li, D. Zhou, J. Zhai, Q. Li, Synthesis and performance of palladium-based catalysts for methanol and ethanol oxidation in alkaline fuel cells. Electrochim. Acta. 102, 79–87 (2013)

    Article  CAS  Google Scholar 

  32. Y. Zhang, G. Chang, S. Liu, J. Tian, L. Wang, W. Lu, X. Qin, X. Sun, Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of methanol. Catal. Sci. Technol. 1, 1636–1640 (2011)

    Article  CAS  Google Scholar 

  33. N.A. Elessawy, J. El Nady, W. Wazeer, A.B. Kashyout, Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene. Sci. Rep. 9, 1–10 (2019)

    Article  CAS  Google Scholar 

  34. E. Moustafa, J. El Nady, A.E.-H.B. Kashyout, K. Shoueir, M. El-Kemary, Fabrication of high yield photoluminescent quantized graphene nanodiscs for supercapacitor devices. ACS Omega 6, 23090–23099 (2021)

    Article  CAS  Google Scholar 

  35. Z. Yin, M. Chi, Q. Zhu, D. Ma, J. Sun, X. Bao, Supported bimetallic PdAu nanoparticles with superior electrocatalytic activity towards methanol oxidation. J. Mater. Chem. A. 1, 9157–9163 (2013)

    Article  CAS  Google Scholar 

  36. S. Hemmati, L. Mehrazin, H. Ghorban, S.H. Garakani, T.H. Mobaraki, P. Mohammadi, H. Veisi, Green synthesis of Pd nanoparticles supported on reduced graphene oxide, using the extract of Rosa canina fruit, and their use as recyclable and heterogeneous nanocatalysts for the degradation of dye pollutants in water. RSC Adv. 8, 21020–21028 (2018)

    Article  CAS  Google Scholar 

  37. R. Zhao, X. Sun, Y. Jin, J. Han, L. Wang, F. Liu, Au/Pd/gC3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. J. Mater. Sci. 54, 5445–5456 (2019)

    Article  CAS  Google Scholar 

  38. Z. Huang, H. Zhou, C. Li, F. Zeng, C. Fu, Y. Kuang, Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. J. Mater. Chem. 22, 1781–1785 (2012)

    Article  CAS  Google Scholar 

  39. M. Alexiadou, M. Kandyla, G. Mousdis, M. Kompitsas, Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance. Appl. Phys. A 123, 262 (2017)

    Article  CAS  Google Scholar 

  40. B. Panigrahy, D.D. Sarma, Enhanced photocatalytic efficiency of AuPd nanoalloy decorated ZnO-reduced graphene oxide nanocomposites. RSC Adv. 5, 8918–8928 (2015)

    Article  CAS  Google Scholar 

  41. G.-H. Han, S.-H. Lee, M. Seo, K.-Y. Lee, Effect of polyvinylpyrrolidone (PVP) on palladium catalysts for direct synthesis of hydrogen peroxide from hydrogen and oxygen. RSC Adv. 10, 19952–19960 (2020)

    Article  CAS  Google Scholar 

  42. L.K. Parrott, E. Erasmus, Palladium/graphene oxide nanocomposites with carbon nanotubes and/or magnetite for the reduction of nitrophenolic compounds. RSC Adv. 10, 32885–32896 (2020)

    Article  CAS  Google Scholar 

  43. F. Farivar, P.L. Yap, K. Hassan, T.T. Tung, D.N.H. Tran, A.J. Pollard, D. Losic, Unlocking thermogravimetric analysis (TGA) in the fight against “Fake graphene” materials. Carbon N. Y. 179, 505–513 (2021)

    Article  CAS  Google Scholar 

  44. J. Yang, C. Tian, L. Wang, H. Fu, An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J. Mater. Chem. 21, 3384–3390 (2011)

    Article  CAS  Google Scholar 

  45. C. Li, Q. Yuan, B. Ni, T. He, S. Zhang, Y. Long, L. Gu, X. Wang, Dendritic defect-rich palladium–copper–cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 9, 1–9 (2018)

    CAS  Google Scholar 

  46. Z.A. Al-Ahmed, N.S. Al-Radadi, M.K. Ahmed, K. Shoueir, M. Elkemary, Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. Arab. J. Chem. 13, 8626–8637 (2020)

    Article  CAS  Google Scholar 

  47. Y. Liu, S.-S. Chen, A.-J. Wang, J.-J. Feng, X. Wu, X. Weng, An ultra-sensitive electrochemical sensor for hydrazine based on AuPd nanorod alloy nanochains. Electrochim. Acta. 195, 68–76 (2016)

    Article  CAS  Google Scholar 

  48. Y. Liu, H. Zhou, T. Yin, Y. Gong, G. Yuan, L. Chen, J. Liu, Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J. Colloid Interface Sci. 552, 388–400 (2019)

    Article  CAS  Google Scholar 

  49. T.H. Oh, Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell. Renew. Energy. 163, 930–938 (2021)

    Article  CAS  Google Scholar 

  50. J.-J. Shi, J.-J. Zhu, Sonoelectrochemical fabrication of Pd–graphene nanocomposite and its application in the determination of chlorophenols. Electrochim. Acta 56, 6008–6013 (2011)

    Article  CAS  Google Scholar 

  51. R. Awasthi, R.N. Singh, Graphene-supported Pd–Ru nanoparticles with superior methanol electrooxidation activity. Carbon N. Y. 51, 282–289 (2013)

    Article  CAS  Google Scholar 

  52. B. Lesiak, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, B. Mierzwa, A. Mikolajczuk-Zychora, K. Juchniewicz, A. Borodzinski, J. Zemek, P. Jiricek, Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell. Appl. Surf. Sci. 387, 929–937 (2016)

    Article  CAS  Google Scholar 

  53. X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 133, 3693–3695 (2011)

    Article  CAS  Google Scholar 

  54. N.V. Long, T.D. Hien, T. Asaka, M. Ohtaki, M. Nogami, Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures. Int. J. Hydrogen Energy 36, 8478–8491 (2011)

    Article  CAS  Google Scholar 

  55. Y. Xiong, Y. Xia, Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv. Mater. 19, 3385–3391 (2007)

    Article  CAS  Google Scholar 

  56. N. Li, S. Tang, X. Meng, Facile synthesis of bimetallic Au@ Pd nanoparticles with core–shell structures on graphene nanosheets. J. Mater. Sci. Technol. 30, 1071–1077 (2014)

    Article  CAS  Google Scholar 

  57. A.H. Al-Marri, M. Khan, M.R. Shaik, N. Mohri, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A. Al-Warthan, W. Tremel, M.N. Tahir, Green synthesis of Pd@ graphene nanocomposite: catalyst for the selective oxidation of alcohols. Arab. J. Chem. 9, 835–845 (2016)

    Article  CAS  Google Scholar 

  58. N. Li, S. Tang, X. Meng, Reduced graphene oxide supported bimetallic cobalt–palladium nanoparticles with high catalytic activity towards formic acid electro-oxidation. J. Mater. Sci. Technol. 31, 30–36 (2015)

    Article  CAS  Google Scholar 

  59. L.L. Sikeyi, T.D. Ntuli, T.H. Mongwe, N.W. Maxakato, E. Carleschi, B.P. Doyle, N.J. Coville, M.S. Maubane-Nkadimeng, Microwave assisted synthesis of nitrogen doped and oxygen functionalized carbon nano onions supported palladium nanoparticles as hybrid anodic electrocatalysts for direct alkaline ethanol fuel cells. Int. J. Hydrogen Energy. 46, 10862–10875 (2021)

    Article  CAS  Google Scholar 

  60. A.B. Kashyout, A. Nassr, L. Giorgi, T. Maiyalagan, B.A.B. Youssef, Electrooxidation of methanol on carbon supported Pt–Ru nanocatalysts prepared by ethanol reduction method. Int. J. Electrochem. Sci. 6, 379–393 (2011)

    CAS  Google Scholar 

  61. X. Wang, Y. Ma, S. Li, A.-H. Kashyout, B. Zhu, M. Muhammed, Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells. J. Power Sources 196, 2754–2758 (2011)

    Article  CAS  Google Scholar 

  62. L. Giorgi, T.D. Makris, R. Giorgi, N. Lisi, E. Salernitano, Electrochemical properties of carbon nanowalls synthesized by HF-CVD. Sensors Actuators B Chem 126, 144–152 (2007)

    Article  CAS  Google Scholar 

  63. D.M. Gattia, M.V. Antisari, L. Giorgi, R. Marazzi, E. Piscopiello, A. Montone, S. Bellitto, S. Licoccia, E. Traversa, Study of different nanostructured carbon supports for fuel cell catalysts. J. Power Sources 194, 243–251 (2009)

    Article  CAS  Google Scholar 

  64. C. Paoletti, A. Cemmi, L. Giorgi, R. Giorgi, L. Pilloni, E. Serra, M. Pasquali, Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation. J. Power Sources 183, 84–91 (2008)

    Article  CAS  Google Scholar 

  65. K.S. Bhavani, T. Anusha, P.K. Brahman, Fabrication and characterization of gold nanoparticles and fullerene-C60 nanocomposite film at glassy carbon electrode as potential electro-catalyst towards the methanol oxidation. Int. J. Hydrogen Energy 44, 25863–25873 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express many thanks to the Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, for its support for all analyses and help during the work. Also, many gratitude to the City of Scientific Research and Technological Applications (SRTA-City) for the electrochemical investigations and TEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

All authors participate in the manuscript equally.

Corresponding authors

Correspondence to Kamel R. Shoueir or Maged El-Kemary.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-elnaby, A.E., Shoueir, K.R., Wazeer, W. et al. Synthesis of binary nanohybrid-based polygonal Pd nanoparticles for proficient photoelectrochemical oxidation of methanol and urea. J Mater Sci: Mater Electron 33, 13255–13270 (2022). https://doi.org/10.1007/s10854-022-08266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08266-x

Navigation