Skip to main content
Log in

Investigation of structural and optical properties of lithium lead bismuth silicate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heavy metal-based oxide glasses with composition 30Li2O·20PbO·xBi2O3·(50 − x)SiO2 (where, x = 0 to 50 mol%) were prepared by standard melt-quench procedure at temperature 1150 °C for 30 min. The amorphous nature of the prepared samples was confirmed by the low-intensity broad hump in XRD analysis. Fourier transform infrared spectroscopy predicts the role of Bi2O3 as network former as well as modifier due to the existence of BiO3 and BiO6 structural units. The Archimedes principle was used to compute the density of samples, which was found to increase with the bismuth concentration. The optical properties of synthesized samples were measured using UV–VIS–NIR spectroscopy. With increasing bismuth content, optical parameters such as cut-off wavelength, theoretical optical basicity, oxide ion polarizability, and molar refractivity increase, whereas the optical energy bandgap decreases. The large values of refractive index and smaller metallization criterion for all the samples (ranges from 0.310 to 0.395) suggest that studied glasses can be explored for non-linear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data analyzed in this work are included in this article. If more supporting information is required it can be available on request from the corresponding author (Dr. Rajni Bala).

References

  1. O. Sanz, E. Haro-Poinatowski, J. Gonzalo, J.M. Fernandez Navarro, Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J. Non-Cryst. Solids 352, 761–768 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.002

    Article  CAS  Google Scholar 

  2. W.H. Dumbaugh, J.C. Lapp, Heavy metal oxide glasses. J. Am. Ceram. Soc. 75(9), 2315–2326 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05581.x

    Article  CAS  Google Scholar 

  3. R. Bala, A. Agarwal, S. Sanghi, N. Singh, Effect of Bi2O3 on nonlinear optical properties of ZnO·Bi2O3·SiO2 glasses. Opt. Mater. 36(2), 352–356 (2013). https://doi.org/10.1016/j.optmat.2013.09.021

    Article  CAS  Google Scholar 

  4. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems. Compos. B. Eng. 165, 636–647 (2019). https://doi.org/10.1016/j.compositesb.2019.02.022

    Article  CAS  Google Scholar 

  5. M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M. Çelikbilek-Ersundu, A.E. Ersundu, I.V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO−Bi2O3−B2O3 glasses. Radiat. Phys. Chem. 145, 26–33 (2018). https://doi.org/10.1016/j.radphyschem.2017.12.010

    Article  CAS  Google Scholar 

  6. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236 (2017). https://doi.org/10.1016/j.jallcom.2017.08.237

    Article  CAS  Google Scholar 

  7. A.F.A. El-Rehim, E.A.A. Wahab, M.M.A. Halaka, K.S. Shaaban, Optical properties of SiO2-TiO2-La2O3-Na2O-Y2O3 glasses and a novel process of preparing the parent glass-ceramics. SILICON 14, 373–384 (2022). https://doi.org/10.1007/s12633-021-01002-w

    Article  CAS  Google Scholar 

  8. X. Lu, L. Zhang, H. Talebinezhad, Y. Tong, Z.Y. Cheng, Effects of CuO additive on the dielectric property and energy-storage performance of BaTiO3-SiO2 ceramic-glass composite. Ceram. Int. 44(14), 16977–16983 (2018). https://doi.org/10.1016/j.ceramint.2018.06.139

    Article  CAS  Google Scholar 

  9. S.L. Meena, Thermal and physical properties of Pm3+ ions doped lead lithium bismuth silicate glasses. J. Pure Appl. Ind. Phys. 9(11), 72–81 (2019)

    Google Scholar 

  10. A.A. Menazea, A.M. Abdelghany, Precipitation of silver nanoparticle within silicate glassy matrix via Nd:YAG laser for biomedical applications. Rad. Phys. Chem. 174, 108958 (2020). https://doi.org/10.1016/j.radphyschem.2020.108958

    Article  CAS  Google Scholar 

  11. R. Bala, A. Agarwal, S. Sanghi, S. Khasa, Influence of SiO2 on the structural and dielectric properties of ZnO·Bi2O3·SiO2 glasses. J. Integr. Sci. Technol. 3(1), 6–13 (2015)

    Google Scholar 

  12. S. Sailaja, C.N. Raju, C.A. Reddy, B.D.P. Raju, Y.D. Jho, S. Reddy, Optical properties of Sm3+-doped cadmium bismuth borate glasses. J. Mol. Struct. 1038, 29–34 (2013). https://doi.org/10.1016/j.molstruc.2013.01.052

    Article  CAS  Google Scholar 

  13. A. Dutta, A. Ghosh, Structural and optical properties of lithium barium bismuthate glasses. J. Non-Cryst. Solids 353, 1333–1336 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.09.052

    Article  CAS  Google Scholar 

  14. S.M. Abo-Naf, R.L. Elwan, G.M. Elkomy, Crystallization of bismuth oxide nano-crystallites in a SiO2-PbO-Bi2O3 glass matrix. J. Non-Cryst. Solids 358(5), 964–968 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.01.034

    Article  CAS  Google Scholar 

  15. T. Maeder, Review of Bi2O3 based glasses for electronics and related applications. Int. Mater. Rev. 58(1), 3–40 (2013). https://doi.org/10.1179/1743280412Y.0000000010

    Article  CAS  Google Scholar 

  16. W. Vogel, Glass Chemistry, 2nd edn. (Springer, Berlin, 1994)

    Book  Google Scholar 

  17. Y.B. Saddeek, G.Y. Mohamed, H.S. Hassan, A.M.A. Mostafa, G. Abdelfadeel, Effect of gamma irradiation on the FTIR of cement kiln dust– bismuth borate glasses. J. Non-Cryst. Solids 419(1), 110–117 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.03.021

    Article  CAS  Google Scholar 

  18. L. Baia, R. Stefan, W. Kiefer, J. Popp, S. Simon, Structural investigations of copper doped B2O3-Bi2O3 glasses with high bismuth oxide content. J. Non-Cryst. Solids 303, 379–386 (2002). https://doi.org/10.1016/S0022-3093(02)01042-6

    Article  CAS  Google Scholar 

  19. Y.-S. Lai, S.-S. Lai, Y.-J. Lie, H.-J. Lin, T.-H. Chiang, Investigation of SiO2-B2O3-ZnO-Bi2O3 glass frits on the interface reaction of silver front contacts. J. Alloys Compd. 858, 157646 (2021). https://doi.org/10.1016/j.jallcom.2020.157646

    Article  CAS  Google Scholar 

  20. S.M. Saheb, P.V. Rao, R. Vijay, P.R. Babu, Ch. Chandrakala, P.S. Prasad, G.N. Raju, Spectroscopic and electrical investigations of copper ions in PbO–GeO2 glasses. Results Phys. 11, 780–786 (2018). https://doi.org/10.1016/j.rinp.2018.10.012

    Article  Google Scholar 

  21. A. Pan, A. Ghosh, Dynamics of lithium ions in bismuthate glasses. J. Chem. Phys. 112, 1503 (2000). https://doi.org/10.1063/1.480717

    Article  CAS  Google Scholar 

  22. A. Dutta, A. Ghosh, Ionic conductivity of Li2O-BaO-Bi2O3 glasses. J. Non-Cryst. Solids 351, 203–208 (2005). https://doi.org/10.1016/j.jnoncrysol.2004.11.010

    Article  CAS  Google Scholar 

  23. A.V. Rao, C. Laxmikanth, B.A. Rao, N. Veeraiah, Dielectric relaxation and a.c. conduction phenomena of PbO–PbF2–B2O3 glasses doped with FeO. J. Phys. Chem. Solids 67, 2263–2274 (2006). https://doi.org/10.1016/j.jpcs.2006.04.012

    Article  CAS  Google Scholar 

  24. N. Ahlawat, N. Ahlawat, A. Agarwal, P. Aghamkar, Monica, Infrared spectroscopic study for structural investigation of lithium lead silicate glasses. AIP Conf. Proc. 1393, 313–314 (2011). https://doi.org/10.1063/1.3653735

    Article  CAS  Google Scholar 

  25. K.J. Rao, B.G. Rao, S.R. Elliott, Glass formation in the system PbO-PbCl2. J. Mater. Sci. 20, 1678–1682 (1985). https://doi.org/10.1007/BF00555271

    Article  CAS  Google Scholar 

  26. G. Srinivasa Rao, N. Veeraiah, Study on various physical properties of PbO–As2O3 glasses containing manganese ions. J. Alloys Compd. 327(1–2), 52–65 (2001). https://doi.org/10.1016/S0925-8388(01)01559-6

    Article  CAS  Google Scholar 

  27. J. Yao, Y. Li, R.C. Massé, E. Uchaker, G. Cao, Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 11, 205–259 (2018). https://doi.org/10.1016/j.ensm.2017.10.014

    Article  Google Scholar 

  28. A. Kato, M. Yamamoto, A. Sakuda, A. Hayashi, Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Appl. Energy Mater. 1, 1002–1007 (2018). https://doi.org/10.1021/acsaem.7b00140

    Article  CAS  Google Scholar 

  29. A.A. Menazea, A.M. Ismail, I.S. Elashmawi, The role of Li4Ti5O12 nanoparticles on enhancement the performance of PVDF/PVK blend for lithium-ion batteries. J. Mater. Res. Technol. 9(3), 5689–5698 (2020). https://doi.org/10.1016/j.jmrt.2020.03.093

    Article  CAS  Google Scholar 

  30. H. Masai, Y. Takahashi, T. Fujiwara, T. Suzuki, Y. Ohishi, Correlation between near infrared emission and bismuth radical species of Bi2O3-containing aluminoborate glass. J. Appl. Phys. 106, 103523 (2009). https://doi.org/10.1063/1.3264631

    Article  CAS  Google Scholar 

  31. A.R. Molla, A. Tarafder, B. Karmakar, Synthesis and properties of glasses in the K2O–SiO2–Bi2O3–TiO2 system and bismuth titanate (Bi4Ti3O12) nano glass–ceramics thereof. J. Mater. Sci. 46, 2967–2976 (2011). https://doi.org/10.1007/S10853-010-5173-1

    Article  CAS  Google Scholar 

  32. K.J. Rao, Structural Chemisstry of Glasses (Elsevier, North Holland, 2002). https://doi.org/10.1016/B978-0-08-043958-7.X5017-1

    Book  Google Scholar 

  33. Y. Chu, J. Ren, J. Zhang, G. Peng, J. Yang, P. Wang, L. Yuan, Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers. Sci. Rep. 6, 33865 (2016). https://doi.org/10.1038/srep33865

    Article  CAS  Google Scholar 

  34. B. Bochentyn, A. Warych, N. Szreder, A. Mielewczyk-Gryn, J. Karczewski, M. Przesniak-Welenc, M. Gazda, B. Kusz, Characterization of structural, thermal and mechanical properties of bismuth silicate glasses. J. Non-Cryst. Solids 439, 51–56 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.02.026

    Article  CAS  Google Scholar 

  35. I.B. Kacem, L. Gautron, D. Coillot, D.R. Neuville, Structure and properties of lead silicate glasses and melts. Chem. Geol. 461, 104–114 (2017). https://doi.org/10.1016/j.chemgeo.2017.03.030

    Article  CAS  Google Scholar 

  36. S.S. Slavov, Y.B. Dimitriev, Glass formation in the system Bi2O3-TiO2-SiO2. J. Chem. Technol. Metall. 51, 536–546 (2016)

    CAS  Google Scholar 

  37. N. Ahlawat, S. Sanghi, A. Agarwal, R. Bala, Influence of SiO2 on the structure and optical properties of lithium bismuth silicate glasses. J. Mol. Struct. 963, 82–86 (2010). https://doi.org/10.1016/j.molstruc.2009.10.018

    Article  CAS  Google Scholar 

  38. J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, C. Zhu, Infrared luminescence properties of bismuth-doped barium silicate glasses. J. Mater. Res. 22, 1954–1958 (2007). https://doi.org/10.1557/jmr.2007.0245

    Article  CAS  Google Scholar 

  39. R. Parmar, R.S. Kundu, R. Punia, P. Aghamkar, N. Kishore, Iron modified structural and optical spectral properties of bismuth silicate glasses. Phys. Rev. B Condens. Matter 450(1), 39–44 (2014). https://doi.org/10.1016/j.physb.2014.05.056

    Article  CAS  Google Scholar 

  40. S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J. Alloys Compd. 597, 110–118 (2014). https://doi.org/10.1016/j.jallcom.2014.01.211

    Article  CAS  Google Scholar 

  41. S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, Crystallization kinetics, optical and dielectric properties of Li2O⋅CdO⋅Bi2O3⋅SiO2 glasses. J. Mol. Struct. 1098, 1–11 (2015). https://doi.org/10.1016/j.molstruc.2015.05.017

    Article  CAS  Google Scholar 

  42. N. Ahlawat, S. Sanghi, A. Agarwal, S. Rani, Effect of Li2O on structure and optical properties of lithium bismosilicate glasses. J. Alloys Compd. 480, 516–520 (2015). https://doi.org/10.1016/j.jallcom.2009.01.116

    Article  CAS  Google Scholar 

  43. H.A. Othman, H.S. Elkholy, I.Z. Hager, FTIR of binary lead borate glass: Structural investigation. J. Mol. Struct. 1106, 286–290 (2016). https://doi.org/10.1016/j.molstruc.2015.10.076

    Article  CAS  Google Scholar 

  44. A.M. Abdelghany, H.A. ElBatal, R.M. Ramadan, The effect of Li2O and LiF on structural properties of cobalt doped borate glasses. J. King Saud Univ. Sci. 29(4), 510–516 (2017). https://doi.org/10.1016/j.jksus.2016.09.003

    Article  Google Scholar 

  45. C.H. Rajyasree, P.M.V. Teja, K.V.R. Murthy, D.K. Rao, Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO. Phys. Rev. B Condens. Matter 406, 4366–4372 (2011). https://doi.org/10.1016/j.physb.2011.08.082

    Article  CAS  Google Scholar 

  46. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, Ch. Srinivasu, S.A. Ahmed, H.O. Tekin, S. Rahman, Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. 47, 5286–5299 (2021). https://doi.org/10.1016/j.ceramint.2020.10.109

    Article  CAS  Google Scholar 

  47. P. Kaur, K.J. Singh, S. Thakur, M. Kurudirek, M.M. Rafiei, Structural investigation and nuclear radiation shielding ability of bismuth lithium antimony borate glasses. J. Phys. Chem. Solids 150, 109812 (2021). https://doi.org/10.1016/j.jpcs.2020.109812

    Article  CAS  Google Scholar 

  48. M.A. Girsova, S.V. Firstov, T.V. Antropova, Structural and optical properties of the bismuth-containing quartz-like glasses. J. Phys.: Conf. Ser. 541, 012022 (2014). https://doi.org/10.1088/1742-6596/541/1/012022

    Article  Google Scholar 

  49. P. Pascuta, M. Bosca, S. Rada, M. Culea, I. Bratu, E. Culea, FTIR spectroscopic study of Gd2O3-Bi2O3-B2O3 glasses. J. Optoelectron. Adv. Mater. 10, 2416–2419 (2008)

    CAS  Google Scholar 

  50. B. Suresh, M.S. Reddy, A.S.S. Reddy, Y. Gandhi, V.R. Kumar, N. Veeraiah, Spectroscopic features of Ni2+ ion in PbO–Bi2O3–SiO2 glass system. Spectrochem. Acta Part A: Mol. Biomol. Spectrosc. 141, 263–271 (2015). https://doi.org/10.1016/j.saa.2015.01.058

    Article  CAS  Google Scholar 

  51. M. Bosca, L. Pop, G. Borodi, P. Pascuta, E. Culea, XRD and FTIR structural investigations of erbium-doped bismuth-lead-silver glasses and glass ceramics. J. Alloys Compd. 479, 579–582 (2009). https://doi.org/10.1016/j.jallcom.2009.01.001

    Article  CAS  Google Scholar 

  52. K.H. Sun, Fundamental condition of glass formation. J. Am. Ceram. Soc. 30(9), 277–281 (1947). https://doi.org/10.1111/j.1151-2916.1947.tb19654.x

    Article  CAS  Google Scholar 

  53. S.S. Rojas, J.E. Souza, M.R.B. Andreeta, A.C. Hernandes, Influence of ceria addition on thermal properties and local structure of bismuth germanate glasses. J. Non-Cryst. Solids 356, 2942–2946 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.101

    Article  CAS  Google Scholar 

  54. A.S. Tenney, J. Wong, Vibrational spectra of vapor-deposited binary borosilicate glasses. J. Chem. Phys. 56, 5516 (1972). https://doi.org/10.1063/1.1677069

    Article  CAS  Google Scholar 

  55. M.A. Baki, F.A.A. Wahab, F. El. Diasty, One-photon band gap engineering of borate glass doped with ZnO for photonics applications. J. Appl. Phys. 111, 073506 (2012). https://doi.org/10.1063/1.3698623

    Article  CAS  Google Scholar 

  56. J. Tauc, Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 5, 721–729 (1970). https://doi.org/10.1016/0025-5408(70)90112-1

    Article  CAS  Google Scholar 

  57. R. Jose, T. Suzuki, Y. Ohishi, Thermal and optical properties of TeO2-BaO-SrO-Nb2O5 based glasses: new broadband Raman gain media. J. Non-Cryst. Solids 352, 5564–5571 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.09.013

    Article  CAS  Google Scholar 

  58. L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, H. Hosono, Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping. J. Non-Cryst. Solids 345, 328–331 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.038

    Article  CAS  Google Scholar 

  59. B. Jarzabek, J. Weszka, J. Cisowski, Distribution of electronic states in amorphous Cd–As thin films on the basis of optical measurements. J. Non-Cryst. Solids 333, 206–211 (2004). https://doi.org/10.1016/j.jnoncrysol.2003.09.045

    Article  CAS  Google Scholar 

  60. S. Sanghi, S. Duhan, A. Agarwal, P. Aghamkar, Study of structure and optical properties of Fe2O3·CaO·Bi2O3 glasses. J. Alloys Compd. 488, 454–458 (2009). https://doi.org/10.1016/j.jallcom.2009.09.009

    Article  CAS  Google Scholar 

  61. N. Ahlawat, S. Sanghi, A. Agarwal, N. Ahlawat, Influence of SiO2 on dispersive conductivity and absorption edge of calcium bismuthate glasses. Solid State Ion. 204, 20–26 (2011). https://doi.org/10.1016/j.ssi.2011.08.018

    Article  CAS  Google Scholar 

  62. F. Zaman, G. Rooh, N. Srisittipokakun, C. Wongdeeying, H.J. Kim, J. Kaewkhao, Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs. Solid State Sci. 80, 161–169 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.04.010

    Article  CAS  Google Scholar 

  63. J.A. Duffy, M.D. Ingram, Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Chem. Soc. 93, 6448–6454 (1971). https://doi.org/10.1021/ja00753a019

    Article  CAS  Google Scholar 

  64. J.A. Duffy, M.D. Ingram, An interpretation of glass chemistry in terms of the optical basicity concept. J. Non-Cryst. Solids. 21, 373–410 (1976). https://doi.org/10.1016/0022-3093(76)90027-2

    Article  CAS  Google Scholar 

  65. V. Dimitrov, T. Komatsu, Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163, 100–112 (2002). https://doi.org/10.1006/jssc.2001.9378

    Article  CAS  Google Scholar 

  66. S. Bale, N.S. Rao, S. Rahman, Spectroscopic studies of Bi2O3-Li2O-ZnO-B2O3 glasses. Solid State Sci. 10, 326–331 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.09.017

    Article  CAS  Google Scholar 

  67. V. Dimitrov, T. Komatsu, Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J. Non-Cryst. Solids 249, 160–179 (1999). https://doi.org/10.1016/S0022-3093(99)00317-8

    Article  CAS  Google Scholar 

  68. F. El-Diasty, F.A. AbdelWahab, M. Abdel-Baki, Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions. J. Appl. Phys. 100, 093511 (2006). https://doi.org/10.1063/1.2362926

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SC contributed to conceptualization, methodology, data curation, and writing of the original draft. RB contributed to supervision, methodology, and writing, reviewing, & editing of the manuscript. SR contributed to data curation. SG performed supervision and writing, reviewing, & editing of the manuscript.

Corresponding author

Correspondence to Rajni Bala.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical standards

The contents of this research paper “Investigation of Structural and Optical Properties of Lithium Lead Bismuth Silicate Glasses” are new and we have synthesized these samples for the first time using melt-quenching technique. It is certified that the work is completely original and has not been published/submitted for publication elsewhere. We will follow all the norms of the publication, like copyrights.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Bala, R., Rani, S. et al. Investigation of structural and optical properties of lithium lead bismuth silicate glasses. J Mater Sci: Mater Electron 33, 12371–12383 (2022). https://doi.org/10.1007/s10854-022-08194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08194-w

Navigation