Skip to main content
Log in

Lattice occupying sites and microwave dielectric properties of Mg2+–Si4+ co-doped MgxY3-xAl5-xSixO12 garnet typed ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, MgxY3-xAl5-xSixO12 (x = 0–0.6) ceramics were prepared via a high-temperature solid state method. Mg2+ and Si4+ replacing Y3+ ions at A-site and Al3+ at C-site in garnet-type Y3Al5O12 (YAG) ceramics were designed to discuss the effects of crystal structure, microstructure on microwave dielectric properties for the first time. Liquid phase sintering induced by doping of Mg2+-Si4+, significantly decreased the sintering temperature and time for the densification of YAG ceramics. X-ray diffraction of the samples showed single phase for x ≤ 0.5, while a secondary phase of MgAl2O4 formed for x = 0.6. From the Rietveld analysis, a decrease in lattice dimensions, bond length and valence and rattling effect were observed, while Raman results showed a change in FWHM of the Eg mode. Based on these parameters, a structure–property relation was developed for MgxY3-xAl5-xSixO12 ceramics. Specially, Mg0.1Y2.9Al4.9Si0.1O12 showed a good set of microwave dielectric properties sintered at 1575 °C for 4 h with εr = 10.67, Q × f = 58,799 GHz, τf = -29.5 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: A review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  2. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  3. W. Wersing, Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1, 715–731 (1996)

    Article  CAS  Google Scholar 

  4. M.S. Al-Buriahi, Esraa M. Bakhsh, Barıs Tonguc, Sher Bahadar Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. 46, 19078–19083 (2020)

    Article  CAS  Google Scholar 

  5. Du. Chao, Di. Zhou, S.-Z. Hao, H.-T. Chen, J. Zhang, S.-K. Sun, T. Zhou, M.-Z. Dang, S.-F. Wang, H.-W. Liu, L. Li, Xu. Zhuo, High-Quality-Factor AlON Transparent Ceramics for 5 GHz Wi-Fi Aesthetically Decorative Antennas. ACS Appl. Mater. Interfaces. 13(39), 46866–46874 (2021)

    Article  CAS  Google Scholar 

  6. Wu. Fang-Fang, Di. Zhou, Du. Chao, Shi-Kuan. Sun, Li-Xia. Pang, Temperature stable Sm(Nb1xVx)O4 (0.0 <x <0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C. 9, 9962 (2021)

    Google Scholar 

  7. R. Muhammad, Y. Iqbal, C.R. Rambo, H. Khan, Research trends in microwave dielectrics and factors affecting their properties: a review. Int. J. Mater. Res. 105, 431–439 (2014)

    Article  CAS  Google Scholar 

  8. K. Maex, M. Baklanov, D. Shamiryan, F. Lacopi, S. Brongersma, Z.S. Yanovitskaya, Low dielectric constant materials for microelectronics. J. Appl. Phy. 93, 8793–8841 (2003)

    Article  CAS  Google Scholar 

  9. Q. Liao, L. Li, X. Ren, X. Yu, D. Guo, M. Wang, A low sintering temperature low loss microwave dielectric material ZnZrNb2O8. J. Am. Ceram. Soc. 95, 3363–3365 (2012)

    Article  CAS  Google Scholar 

  10. D. Zhou, L.-X. Pang, D.-W. Wang, Z.-M. Qi, I.M. Reaney, High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS Sustainable Chem. Eng. 6, 11138–11143 (2018)

    Article  CAS  Google Scholar 

  11. H. Xiang, C. Li, H. Jantunen, L. Fang, A.E. Hill, Ultralow loss CaMgGeO4 microwave dielectric ceramic and its chemical compatibility with silver electrodes for low-temperature cofired ceramic applications. ACS Sustainable Chem. Eng. 6, 6458–6466 (2018)

    Article  CAS  Google Scholar 

  12. X.-K. Lan, J. Li, Z.-Y. Zou, G.-F. Fan, W.-Z. Lu, W. Lei, Lattice structure analysis and optimised microwave dielectric properties of LiAl1-x(Zn0.5Si0.5)xO2 solid solutions. J. Eur. Ceram. Soc. 39, 2360–2364 (2019)

    Article  CAS  Google Scholar 

  13. J. Li, Y. Tang, Z. Zhang, W. Fang, L. Ao, A. Yang, L. Liu, L. Fang, Two novel garnet Sr3B2Ge3O12 (B= Yb, Ho) microwave dielectric ceramics with low permittivity and high Q. J. Eur. Ceram. Soc. 41, 1317–1323 (2021)

    Article  CAS  Google Scholar 

  14. Liang Shi, Cheng Liu, Huaiwu Zhang, Effects of W6+ substitution on the microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Dielect. (2020). https://doi.org/10.1142/S2010135X19500498

    Article  Google Scholar 

  15. Z. Song, D. Zhou, Q. Liu, Tolerance factor and phase stability of the garnet structure. Acta Crystallogr Sect. C: Struct. Chem. 75, 1353–1358 (2019)

    Article  CAS  Google Scholar 

  16. T. Hasegawa, Y. Abe, A. Koizumi, T. Ueda, K. Toda, M. Sato, Bluish-white luminescence in rare-earth-free vanadate garnet phosphors: structural characterization of LiCa3MV3O12 (M = Zn and Mg). Inorg. Chem. 57, 857–866 (2018)

    Article  CAS  Google Scholar 

  17. M. Rakhi, G. Subodh, Crystal Structure and Microwave Dielectric Properties of NaPb2B2V3O12(B=Mg, Zn) Ceramics[J]. J. Eur. Ceram. Soc. 38, 4962–4966 (2018)

    Article  CAS  Google Scholar 

  18. J. Li, Y. Tang, Z. Zhang, L. Fang, Two novel garnet Sr3B2Ge3O12 (B = Yb, Ho) microwave dielectric ceramics with low permittivity and high Q. J. Eur. Ceram. Soc. 46, 1695–1701 (2020)

    Google Scholar 

  19. T. Huang, B. Jiang, Y. Wu, J. Li, Y. Shi, W. Liu, Y. Pan, J. Guo, Fabrication, microstructure and optical properties of titanium doped YAG transparent ceramic. J. Alloys Compd. 478, L16–L20 (2009)

    Article  CAS  Google Scholar 

  20. J. Li, W. Liu, Y.-H. Li, S.-Y. He, W.-X. Wang, Effect of Si4+ substitution on luminescence of Y3Al5O12: Mn4+. Ceram. Int. 44, 16099–16102 (2018)

    Article  CAS  Google Scholar 

  21. I. Kagomiya, Y. Matsuda, K. Kakimoto et al., Microwave dielectric properties of YAG ceramics. Ferroelectrics 387, 1–6 (2009)

    Article  CAS  Google Scholar 

  22. D. Levy, J. Barbier, Normal and inverse garnets: Ca3Fe2Ge3O12, Ca3Y2Ge3O12 and Mg3Y2Ge3O12. Acta Crystallogr Sect. C: Cryst. Struct. Commun. 55, 1611–1614 (1999)

    Article  Google Scholar 

  23. Y. Tang, Preparation and properties of garnet-type low-dielectric constant microwave dielectric ceramics (University of Science and Technology Beijing, Beijing, 2021), pp. 86–90

    Google Scholar 

  24. J. Song, K. Song, J. Wei, H. Lin, J. Wu, J. Xu, W. Su, Z. Cheng, Ionic occupation, structures, and microwave dielectric properties of Y3MgAl3SiO12 garnet-type ceramics. J. Am. Ceram. Soc. 101, 244–251 (2018)

    Article  CAS  Google Scholar 

  25. Y.J. Gu, X.B. Ding, W. Hu et al., Effect of Mg/B ratio and Sr2+ substitution for Mg2+ on the sintering, phase composition and microwave dielectric properties of Mg3B2O6 ceramics. Ceram. Int. 46(16), 25888–25894 (2020)

    Article  CAS  Google Scholar 

  26. X.C. Lu, W.J. Bian, B. Quan, Z.F. Wang, H.K. Zhu, Q.T. Zhang, Compositional tailoring effect on ZnGa2O4-TiO2 ceramics for tunable microwave dielectric properties. J. Alloys Compd. 792, 742–749 (2019)

    Article  CAS  Google Scholar 

  27. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr Theor. Gen. Crystallogr. 32, 751–767 (1976)

    Article  Google Scholar 

  28. J. Rodríguez-Carvajal, 2001 An introduction to the program FullProf, in, Laboratoire Léon Brillouin (2001).

  29. M. Zhou, B. Tang, Z. Xiong, X. Zhang, S. Zhang, Effects of MgO doping on microwave dielectric properties of yttrium aluminum garnet ceramics. J. Alloys Compd. 858, 158139 (2021)

    Article  CAS  Google Scholar 

  30. Y. Tian, Y. Tang, X. Yi, G. Ao, J. Chen, D. Hao, Y. Lin, S. Zhou, The analyses of structure and luminescence in (MgyY3-y)(Al5-ySiy)O12 and Y3(MgxAl5–2xSix)O12 ceramic phosphors. J. Alloys Compd. 813, 152236 (2020)

    Article  CAS  Google Scholar 

  31. Yanfen Peng, Jianzhu Li, En.-cai Xiao, Jing Wang, Ze.-ming Qi, Zhenxing Yue, Xianlin Dong, Ying Chen, Guohua Chen, Feng Shi, Lattice vibrational characteristics, dielectric properties and structure-property relationships of (1–x)SrWO4-xTiO2 composite ceramics. Mater. Chem. Phys. 258(15), 123889 (2021)

    Article  CAS  Google Scholar 

  32. G. Mahan, Octupole modifications of the Clausius-Mossotti relation. Solid State Commun. 33, 797–800 (1980)

    Article  CAS  Google Scholar 

  33. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phy. 73, 348–366 (1993)

    Article  CAS  Google Scholar 

  34. J. Dunitz, L. Orgel, Stereochemistry of ionic solids. Adv. Inorg. Chem. Radiochem. 2, 1–60 (1960)

    Article  CAS  Google Scholar 

  35. J. Li, Y. Han, T. Qiu, C. Jin, Effect of bond valence on microwave dielectric properties of (1–x)CaTiO3–x(Li0.5La0.5)TiO3 ceramics. Mater. Res. Bull. 47, 2375–2379 (2012)

    Article  CAS  Google Scholar 

  36. Feng Shi, En-Cai. Xiao, Sintering behavior, crystal structures, phonon characteristics and dielectric properties of LiZnPO4 microwave dielectric ceramics. Mater. Chem. Phys. 259(1), 124139 (2021)

    Article  CAS  Google Scholar 

  37. Feihu Li, Ying Tang, Jie Li, Weishuang Fang, Yu. Laiyuan Ao, Xiangguang Zhao Wang, Liang Fang, Effect of A-site cation on crystal structure and microwave dielectric properties of AGe4O9 (A = Ba, Sr) ceramics. J. Eur. Ceram. Soc. 41, 4153–4159 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under grant numbers: 51672063 and 52161145401, and the Program for Jiaxing Leading Innovative and Entrepreneurial Teams, and Project of Ministry of Science and Technology (Grant D20011), and the Guangdong Key Platform & Programs of the Education Department of Guangdong Province for funding under Grant No.2021ZDZX1003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaixin Song or Dawei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hou, J., Ye, Z. et al. Lattice occupying sites and microwave dielectric properties of Mg2+–Si4+ co-doped MgxY3-xAl5-xSixO12 garnet typed ceramics. J Mater Sci: Mater Electron 33, 2116–2124 (2022). https://doi.org/10.1007/s10854-021-07417-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07417-w

Navigation