Skip to main content
Log in

Improved electrical properties and luminescence properties of lead-free KNN ceramics via phase transition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new KNN-based lead-free luminescent ceramics, (1-x)(K0.48Na0.52)Nb0.96Sb0.04- x(Bi0.45Sm0.05Na0.5)ZrO3 (KNNS-xBSNZ, 0 ≤ x ≤ 0.05), was designed to further improve the properties, such as piezoelectricity, dielectricity, ferroelectricity, and fluorescence properties. It was found that the R–T phase boundary could be constructed when the ceramics with x = 0.03~0.04, and the two-phase coexistence endowed them with relatively superior properties (d33 = 260 pC/N, εr = 2185, TC = 250 oC, Pr = 21 µC/cm2, Ec = 15 kV/cm). Meanwhile, the KNNS-xBSNZ ceramics show good photoluminescence characteristics at room temperature, which can achieve the combination of the piezoelectric and luminescent properties. Hence, we believe that this work has important reference value for the popularization of the optoelectronic components and multifunctional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, A study on the relationship between grain size and electrical properties in (K,Na)NbO3-based lead-free piezoelectric ceramics. Adv. Electron. Mater. 5, 1900570 (2019)

    Article  CAS  Google Scholar 

  2. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics. Ceram. Int. 46, 1390–1395 (2020)

    Article  CAS  Google Scholar 

  3. Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Piezo-catalysis for nondestructive tooth whitening. Nature Communications. 11, 1328 (2020)

    Article  CAS  Google Scholar 

  4. C. Shi, J. Ma, J. Wu, X. Wang, F. Miao, Y. Huang, K. Chen, W. Wu, B. Wu, Coexistence of excellent piezoelectric performance and high Curie temperature in KNN-based lead-free piezoelectric ceramics. J. Alloy. Compd. 846, 156245 (2020)

    Article  CAS  Google Scholar 

  5. C. Zhao, B. Wu, H.C. Thong, J. Wu, Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics. J. Eur. Ceram. Soc. 38, 5411–5419 (2018)

    Article  CAS  Google Scholar 

  6. X. Chen, L. Luo, Z. Zeng, J. Jiao, M. Shehzad, G. Yuan, H. Luo, Y. Wang, Bio-inspired flexible vibration visualization sensor based on piezo-electrochromic effect. J. Mater. 6, 643–650 (2020)

    Google Scholar 

  7. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  8. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171 (2018)

    Article  Google Scholar 

  9. L. Fu, L. Li, C. Yu, Development of the electrical properties of KNN-based lead-free piezoceramics based on the phase boundary building and ternary composition designing. Mater. Res. Bull. 94, 506–512 (2017)

    Article  CAS  Google Scholar 

  10. E. Cross, Lead-free at last. Nature 432, 24–25 (2004)

    Article  CAS  Google Scholar 

  11. B. Wu, C. Zhao, Y. Huang, J. Yin, W. Wu, J. Wu, Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics. ACS Appl. Mater. Interfaces 12, 25050–25057 (2020)

    Article  CAS  Google Scholar 

  12. J. Hao, W. Li, J. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mat. Sci. Eng. R 135, 1–57 (2019)

    Article  Google Scholar 

  13. C. Chen, Y. Huang, Y. Tan, Y. Sheng, Structure and electric properties of Li-modified (K0.48Na0.52)NbO3-0.015CuO lead-free piezoceramics. J. Alloy. Compd. 663, 46–51 (2016)

    Article  CAS  Google Scholar 

  14. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, S.J. Pennycook, Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence. J. Am. Chem. Soc. 141, 13987–13994 (2019)

    Article  CAS  Google Scholar 

  15. J.H. Yoo, J.S. Choi, Microstructure, Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb)O3-(Bi,Na)ZrO3 Ceramics for Piezoelectric Speaker. Integr. Ferroelectr. 211, 152–159 (2020)

    Article  CAS  Google Scholar 

  16. W. Yang, Y. Wang, P. Li, S. Wu, F. Wang, B. Shen, J. Zhai, Improving electromechanical properties in KNANS-BNZ ceramics by the synergy between phase structure modification and grain orientation. J. Mater. Chem. C 8, 6149–6158 (2020)

    Article  CAS  Google Scholar 

  17. M. Chaika, S. Balabanov, D. Permin, Optical spectra and gain properties of Er3+:Lu2O3 ceramics for eye-safe 1.5-µm lasers. Opt. Mater. 112, 110785 (2021)

    Article  CAS  Google Scholar 

  18. Z. Lu, K. Li, J. Wang, L. Luo, Photochromic and temperature sensing properties of Ho3+-Yb3+ codoped Bi0.495-xNa0.5TiO3 ceramics. Opt. Mater. 111, 110718 (2021)

    Article  CAS  Google Scholar 

  19. J. Du, Z. Xu, R. Chu, J. Hao, W. Li, G. Jiang, P. Zheng, Rare-earth doped (K0.5Na0.5)NbO3 multifunctional ceramics. J. Mater. Sci. Mater. Electron. 28, 5288–5294 (2017)

    Article  CAS  Google Scholar 

  20. H.Q. Sun et al., A new red-emitting material K0.5Na0.5NbO3:Eu3+ for white LEDs. Mater. Res. Bull. 64, 134–138 (2015)

    Article  CAS  Google Scholar 

  21. Y. Liu, Y. Du, X. Sun, X. Lv, K. Yang, M. Du, Y. Feng, N. Jiang, Relation of the phase transition and electrical, photoluminescence properties in (1-x) Na0.5K0.5NbO3-xLiSbO3:0.006Dy3+ lead free ceramics. J. Mater. Sci. Mater. Electron. 30, 10507–10515 (2019)

    Article  CAS  Google Scholar 

  22. X. Wang, C.N. Xu, H. Yamada, K. Nishikubo, X.G. Zheng, Electro-Mechano-Optical Conversions in Pr3+-Doped BaTiO3-CaTiO3 Ceramics. Adv. Mater. 17, 1254–1258 (2005)

    Article  CAS  Google Scholar 

  23. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.-Q. Chen, T.R. Shrout, S. Zhang, Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Mater. 17, 349–354 (2018)

    Article  CAS  Google Scholar 

  24. F. Li, M.J. Cabral, B. Xu, Z. Cheng, E.C. Dickey, J.M. LeBeau, J. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L.Q. Chen, T.R. Shrout, S. Zhang, Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019)

    Article  CAS  Google Scholar 

  25. J.G. Hao et al., Good temperature stability and fatigue-free behavior in Sm2O3-modified 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free piezoelectric ceramics. Mater. Res. Bull. 65, 94–102 (2015)

    Article  Google Scholar 

  26. Y. Zhang, R. Chu, Z. Xu, J. Hao, Q. Chen, F. Peng, W. Li, G. Li, Q. Yin, Piezoelectric and dielectric properties of Sm2O3-doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics. J. Alloy. Compd. 502, 341–345 (2010)

    Article  CAS  Google Scholar 

  27. J. Lin, Q. Lu, J. Xu, X. Wu, C. Lin, T. Lin, C. Chen, L. Luo, Outstanding optical temperature sensitivity and dual-mode temperature-dependent photoluminescence in Ho3+-doped (K,Na)NbO3-SrTiO3 transparent ceramics. J. Am. Ceram. Soc. 102, 4710–4720 (2019)

    Article  CAS  Google Scholar 

  28. J. Lin, W. Jing, H. Wang, J. Xu, X. Wu, C. Lin, T. Lin, X. Zheng, L. Luo, Emission color-tunable and optical temperature sensing properties of Er3+/La3+ co-doped (K0.5Na0.5)NbO3 optoelectronic transparent ceramic. J. Lumin. 213, 158–163 (2019)

    Article  CAS  Google Scholar 

  29. X. Xia, X. Jiang, C. Chen, N. Tu, Y. Chen, X. Li, P. Wang, G. Fan, Composition and poling-induced modulation on photoluminescence properties for NBT-xBT: Pr3+ ceramics. J. Eur. Ceram. Soc. 38, 1498–1507 (2018)

    Article  CAS  Google Scholar 

  30. I.M. Reaney, E.L. Colla, N. Setter, Dielectric and Structural Characteristics of Ba-and Sr-based Complex Perovskites as a Function of Tolerance Factor. J. Appl. Phys. 33, 3984–3990 (1994)

    Article  CAS  Google Scholar 

  31. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. J. Appl. Phys. 40, 5999–6002 (2001)

    Article  CAS  Google Scholar 

  32. J. Wang, Y. Du, Z. Li, Y. Liu, B. He, C. Cheng, Z. Zhang, Y. Huang, High permittivity and low dielectric loss of (1-x)Bi0.5(Na0.48K0.52)0.5TiO3-xBaZrO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 31, 10038–10046 (2020)

    Article  CAS  Google Scholar 

  33. Q. Gou, D.Q. Xiao, B. Wu, M. Xiao, S.S. Feng, D.D. Ma Zhao, J.G. Wu, J.G. Zhu, New (1-x)K0.5Na0.5NbO3-x(0.15Bi0.5Na0.5TiO3-0.85Bi0.5Na0.5ZrO3) ternary lead-free ceramics: microstructure and electrical properties. RSC Adv. 5, 30660–30666 (2015)

    Article  CAS  Google Scholar 

  34. X. Cheng, J. Wu, T. Zheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, Rhombohedral-tetragonal phase coexistence and piezoelectric properties based on potassium-sodium niobate ternary system. J. Alloys Compd. 610, 86–91 (2014)

    Article  CAS  Google Scholar 

  35. T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang, L. Xin, X. Lou, Strong Piezoelectricity in (1-x)(K0.4Na0.6)(Nb0.96Sb0.04)O3-xBi0.5K0.5Zr1-ySnyO3 Lead-Free Binary System: Identification and Role of Multiphase Coexistence. ACS Appl. Mater. Interfaces 7, 5927–5937 (2015)

    Article  CAS  Google Scholar 

  36. K.I. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Raman Scattering Study of Piezoelectric (Na0.5K0.5)NbO3-LiNbO3 Ceramics. J. Appl. Phys. 44, 7064–7067 (2005)

    Article  CAS  Google Scholar 

  37. Y. Wang, H. Yang, Q. Zhang, Phase structure and polar characteristics of alkali niobate ceramics modified by Ba0.6Ca0.4ZrO3. Ceram. Int. 42, 929–935 (2016)

    Article  CAS  Google Scholar 

  38. F. Rubio-Marcos, M.A. Bañares, J.J. Romero, J.F. Fernandez, Correlation between the piezoelectric properties and the structure of lead-free KNN-modified ceramics, studied by Raman Spectroscopy. J.Raman Spectrosc. 42, 639–643 (2011)

    Article  CAS  Google Scholar 

  39. L. Luisman, A. Feteira, K. Reichmann, Weak-relaxor behaviour in Bi/Yb-doped KNbO3 ceramics. Appl. Phys. Lett. 99, 192901 (2011)

    Article  Google Scholar 

  40. J. Pokorný, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109, 114110 (2011)

    Article  Google Scholar 

  41. H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, M. Kuball, Raman spectroscopy of (K,Na)NbO3 and (K,Na)1-xLixNbO3. Appl. Phys. Lett. 93, 262901 (2008)

    Article  Google Scholar 

  42. Z. Liu, H. Fan, M. Li, High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core–shell microstructures. J. Mater. Chem. C 3, 5851–5858 (2015)

    Article  CAS  Google Scholar 

  43. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior Piezoelectric Properties in Potassium-Sodium Niobate Lead-Free Ceramics. Adv. Mater. 28, 8519–8523 (2016)

    Article  CAS  Google Scholar 

  44. X. Lv, J. Wu, J. Zhu, D. Xiao, Enhanced temperature stability in the R-T phase boundary with dominating intrinsic contribution. Phys. Chem. Chem. Phys. 20, 20149–20159 (2018)

    Article  CAS  Google Scholar 

  45. K. Chen, J. Ma, C. Shi, W. Wu, B. Wu, Enhanced temperature stability in high piezoelectric performance of (K,Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J. Alloys Compd. 852, (2021)

  46. B. Malic, J. Bernard, A. Bencan, M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc. 28, 1191–1196 (2008)

    Article  CAS  Google Scholar 

  47. J. Noh, J. Yoo, Dielectric and piezoelectric properties of (K0.5Na0.5)(Nb0.97Sb0.03)O3 ceramics doped with Bi2O3. J. Electroceram. 29, 144–148 (2012)

    Article  CAS  Google Scholar 

  48. X. Cheng, Q. Gou, J. Wu, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries. Ceram. Int. 40, 5771–5779 (2014)

    Article  CAS  Google Scholar 

  49. J. Mata, A. Durán, E. Martínez, R. Escamilla, J. Heiras, J.M. Siqueiros, Crystal structure and relaxor-type transition in SrBi2Ta2O9 doped with praseodymium. Phys.: Condens. Matter 18, 10509–10520 (2006)

    CAS  Google Scholar 

  50. Y. Liu, Y. Du, C. Cheng, X. Sun, N. Jiang, J. Wang, X. Sun, Dielectric and impedance spectroscopy analysis of lead-free (1-x)(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-xBaTiO3 ceramics. Ceram. Int. 45, 13347–13353 (2019)

    Article  CAS  Google Scholar 

  51. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, Good temperature stability and fatigue-free behavior in Sm2O3-modified 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free piezoelectric ceramics. Mater. Res. Bull. 65, 94–102 (2015)

    Article  Google Scholar 

  52. J. Kuwata, K. Uchino, S. Nomura, Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals. J. Appl. Phys. 21, 1298–1302 (1982)

    Article  CAS  Google Scholar 

  53. F. Li, S. Zhang, Z. Xu, L.-Q. Chen, The Contributions of Polar Nanoregions to the Dielectric and Piezoelectric Responses in Domain-Engineered Relaxor-PbTiO3 Crystals. Adv. Funct. Mater. 27, 1700310 (2017)

    Article  Google Scholar 

  54. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C 4, 1795–1803 (2016)

    Article  CAS  Google Scholar 

  55. R. Fisch, Random-field models for relaxor ferroelectric behavior. Phys. Rev. B 67, 094110 (2003)

    Article  Google Scholar 

  56. L. Jin, F. Li, S. Zhang, Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  57. W. Li, J. Hao, P. Fu, J. Du, P. Li, C. Hu, W. Li, Z. Yue, Large electrostrictive effect and strong photoluminescence properties in Sm2O3-modified lead-free potassium sodium niobate-based piezoelectric ceramics. J. Mater. 6, 768–780 (2020)

    Google Scholar 

  58. J. Lin, Y. Zhou, Q. Lu, X. Wu, C. Lin, T. Lin, K.-H. Xue, X. Miao, B. Sa, Z. Sun, Reversible modulation of photoenergy in Sm-doped (K0.5Na0.5)NbO3 transparent ceramics via photochromic behavior. J. Mater. Chem. A 7, 19374–19384 (2019)

    Article  CAS  Google Scholar 

  59. J. Lin, J. Xu, C. Liu, Y. Lin, X. Wu, C. Lin, X. Zheng, C. Chen, Effects of compositional changes on up-conversion photoluminescence and electrical properties of lead-free Er-doped K0.5Na0.5NbO3-SrTiO3 transparent ceramics. J. Alloys Compd. 784, 60–67 (2019)

    Article  CAS  Google Scholar 

  60. S. Li, W. Wang, X. Wei, L. Li, Q. Zhang, Y. Li, Y. Pan, Luminescent properties of Sr2LaF7: Yb3+/Er3+ nanocrystals embedded in glass ceramics for optical thermometry. Opt. Mater. 113, 110840 (2021)

    Article  CAS  Google Scholar 

  61. Q. Zhang, H. Sun, X. Wang, T. Zhang, Highly efficient orange emission (K0.5Na0.5)NbO3:Sm3+ lead free piezoceramics. Mater. Lett. 117, 283–285 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Du.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1596 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., He, B., Du, Y. et al. Improved electrical properties and luminescence properties of lead-free KNN ceramics via phase transition. J Mater Sci: Mater Electron 32, 28819–28829 (2021). https://doi.org/10.1007/s10854-021-07266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07266-7

Navigation