Skip to main content
Log in

Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a triple hexagonal split ring resonator incorporated metamaterial sensor is proposed for the improved detection of fuel adulteration. The proposed metamaterial structure is made of three resonators, acting to gather the effective capacitive and inductive properties whereby any trivial variations in the dielectric properties of the system can be readily correlated with the shift in the resonance frequency. The advanced design system and computer simulation technology software were used to measure the transmission coefficient, followed by numerical and experimental investigations. The proposed sensor was validated on petrol, kerosene and grease samples having different contents and humidity levels. Results showed a noticeable shift in the resonance frequency of the samples upon changing their concentration and humidity. The sensor was able to provide an improved sensitivity and a high-quality factor of 291. The proposed design can be used for the real time applications in the frequency range from 1 to 20 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Global Marketing, Diesel Fuels Technical Review (Chevron Corporation, San Ramon, CA, 2007)

    Google Scholar 

  2. P.A. Udaykiran, V.J. Felix, K. Ganesan, Indian J. Sci. Technol. 8(S2), 90–95 (2015)

    Article  Google Scholar 

  3. S. Patrikar, S. Kulkarni, AIP Conf. Proc. 2136(1), 050004 (2019)

    Google Scholar 

  4. R. Gotor, J. Bell, K. Rurack, J. Vis. Exp. 141, e58019 (2018)

    Google Scholar 

  5. L.S. Moreira, L.A. d’Avila, D.A. Azevedo, Chromatographia 58(7–8), 501–505 (2003)

    CAS  Google Scholar 

  6. P.K. Kanaujia, B.P. Vempatapu, Trends Anal. Chem. 92, 1–11 (2017)

    Article  CAS  Google Scholar 

  7. L. Deng, Y.I. Abdulkarim, M. Karaaslan, Ş Dalgaç, R.H. Mahmud, F.O. Alkurt, F.F. Muhammadsharif, H.N. Awl, S. Huang, H. Luo, Electronics 9(825), 1–17 (2020)

    Google Scholar 

  8. D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  CAS  Google Scholar 

  9. R.A. Shelby, Science 292(5514), 77–79 (2001)

    Article  CAS  Google Scholar 

  10. L. Deng, Y.I. Abdulkarim, O. Altıntaş, E. Ünal, M. Karaaslan, Phys. E: Low-dimens. Syst. Nanostruct. 114, 113593 (2019)

    Article  CAS  Google Scholar 

  11. F. Dincer, K. Muharrem, C. Sabah, J. Electromagn. Waves Appl. 29(18), 2492–2500 (2015)

    Article  Google Scholar 

  12. M. Mao, Y. Liang, R. Liang, L. Zhao, N. Xu, J. Guo, F. Wang, H. Meng, H. Liu, Z. Wei, Nanomaterials 9(8), 1101 (2019)

    Article  CAS  Google Scholar 

  13. D. Ramaccia, D.L. Sounas, A. Alu, F. Bilotti, A. Toscano, IEEE Antennas Wirel. Propag. Lett. 17(11), 1968–1972 (2018)

    Article  Google Scholar 

  14. S. Guo, Y. Zhang, Y. Ge, S. Zhang, H. Zeng, H. Zhang, Adv. Mater. 31(39), 1902352 (2019)

    Article  CAS  Google Scholar 

  15. K. Sun, S. Han, J.H. Choi, J.K. Lee, IEEE Antennas Wirel. Propag. Lett. 17(7), 1162–1165 (2018)

    Article  Google Scholar 

  16. R. Junyi, S. Gong, W. Jiang, IEEE Antennas Wirel. Propag. Lett. 17(1), 102–105 (2017)

    Google Scholar 

  17. J.D. Binion, E. Lier, T.H. Hand, Z.H. Jiang, D.H. Werner, Nat. Commun. 10, 108 (2019)

    Article  CAS  Google Scholar 

  18. L. Aiping, X. Zhou, J. Acoust. Soc. Am. 132, 2800 (2016)

    Google Scholar 

  19. G. Yuan, K.S. Rogers, E.T.F. Rogers, N.I. Zheludev, Phys. Rev. Appl. 11(6), 064016 (2019)

    Article  CAS  Google Scholar 

  20. M. Bağmancı, M. Karaaslan, E. Unal, M. Özaktürk, O. Akgol, F. Karadağ, A. Bhadauria, M. Bakır, Int. J. RF Microw. Comput. Aided Eng. 29(7), e21597 (2019)

    Article  Google Scholar 

  21. T. Tan, Z. Yan, H. Zou, K. Ma, F. Liu, L. Zhao, Z. Peng, W. Zhang, Appl. Energy 254, 113717 (2019)

    Article  Google Scholar 

  22. M.T. Islam, A. Hoque, A.F. Almutairi, N. Amin, Sensors 19(1), 169 (2019)

    Article  CAS  Google Scholar 

  23. S. Ogawa, Y. Takagawa, M. Kimata, Materials 12(19), 3157 (2019)

    Article  CAS  Google Scholar 

  24. Z. Yi, C. Liang, X. Chen, Z. Zhou, Y. Tang, X. Ye, Y. Yi, J. Wang, P. Wu, Micromachines 10(7), 443 (2019)

    Article  Google Scholar 

  25. Y.I. Abdulkarim, L. Deng, M. Karaaslan, E. Unal, Chem. Phys. Lett. 732, 136655 (2019)

    Article  CAS  Google Scholar 

  26. O. Altintas, M. Aksoy, O. Akgol, E. Unal, M. Karaaslan, C. Sabah, J. Electrochem. Soc. 164(12), B567–B573 (2017)

    Article  CAS  Google Scholar 

  27. M. Bakir, J. Electrochem. Soc. 164(9), 8488 (2017)

    Article  CAS  Google Scholar 

  28. M. Bakir, M. Karaaslan, O. Akgol, O. Altintas, E. Unal, C. Sabah, Optik 168, 741–746 (2018)

    Article  CAS  Google Scholar 

  29. W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, D. Abbott, Sens. Actuators A Phys. 189, 233 (2013)

    Article  CAS  Google Scholar 

  30. O. Akgol, E. Unal, M. Bağmancı, M. Karaaslan, U.K. Sevim, M. Öztürk, A. Bhadauria, J. Electron. Mater. 48(4), 2469–2481 (2019)

    Article  CAS  Google Scholar 

  31. O. Altintas, M. Aksoy, E. Unal, M. Karaaslan, J. Electrochem. Soc. 166(6), B482–B488 (2019)

    Article  CAS  Google Scholar 

  32. M. Bakir, M. Karaaslan, F. Karadag, S. Dalgac, E. Unal, O. Akgol, Appl. Comput. Electromagn. Soc. J. 34(5), 799–806 (2019)

    Google Scholar 

  33. M.A. Tümkaya, E. Ünal, C. Sabah, Int. J. Mod. Phys. B 33(24), 1950276 (2019)

    Article  CAS  Google Scholar 

  34. C. Qiu, J. Wu, R. Zhu, L. Shen, B. Zheng, Opt. Commun. 451, 226–230 (2019)

    Article  CAS  Google Scholar 

  35. M. Bakır, Ş Dalgaç, M. Karaaslan, F. Karadağ, O. Akgol, E. Unal, T. Depçi, C. Sabah, J. Electrochem. Soc. 166(12), B1044–B1052 (2019)

    Article  CAS  Google Scholar 

  36. W. Liu, M. Wang, Y. Niu, L. Xu, J. Electrochem. Soc. 166(15), B1452–B1460 (2019)

    Article  CAS  Google Scholar 

  37. V. Rawat, V. Nadkarni, S.N. Kale, S. Hingane, S. Wani, C. Rajguru C, in Proceedings of the 2nd International Symposium on Physics and Technology of Sensors (ISPTS), vol. 257 (1EEE, 2015).

  38. V. Rawat, V. Nadkarni, S.N. Kale, Def. Sci. J. 66, 421 (2016)

    Article  CAS  Google Scholar 

  39. M.A. Tümkaya, F. Dinçer, M. Karaaslan, C. Sabah, J. Electron. Mater. 46, 4955 (2017)

    Article  CAS  Google Scholar 

  40. W. Xian-Ju, L. Xin-Fang, Chin. Phys. Lett 26(5), 056601 (2009)

    Article  Google Scholar 

  41. A. Singh, S.K. Sharma, Int. J. Res. Eng. Technol. 03(10), 144 (2014)

    Google Scholar 

  42. M.K.A Rahim, M. Aminu-Baba, F. Zubir, M. Fairus, M. Yusoff, N. Asmawati Samsuri, O. Ayop, K.I. Jahun, in IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, New Zealand (2018).

  43. R.S. Daniel, R. Pandeeswari, S. Raghavan, Int. J. RF and Microw. Comput. Aided Eng. 28(2), e21401 (2018)

    Article  Google Scholar 

  44. M. Samsuzzaman, M.S. Islam, G.K. Beng, N. Misran, N. Amin, IEEE Access 28, 68239–68253 (2020)

    Google Scholar 

  45. W. Jianbo, C. Xinyi, C. Guibo, S. Guancheng, C. Jian, L. Jun, Infrared Laser Eng. 41, 622 (2012)

    Google Scholar 

  46. T. Saktioto, R.F. Syahputra, S. Punthawanunt, J. Ali, P. Yupapin, Microw. Opt. Technol. Lett. 59(6), 1337–1340 (2017)

    Article  Google Scholar 

  47. M.T. Islam, F.B. Ashraf, T. Alam, N. Misran, K.B. Mat, Sensor 18(9), 2959 (2018)

    Article  Google Scholar 

  48. M.R. Islam, M.T. Islam, M. Moniruzzaman, M. Samsuzzaman, H. Arshad, Sci. Rep. 11, 1–22 (2021)

    Article  CAS  Google Scholar 

  49. X. Chen et al., Phys. Rev. 70, 016608 (2004)

    Google Scholar 

  50. J.C. Maxwell-Garnett, Philos. Trans. R. Soc. Lond. A 203, 385–420 (1904)

    Article  Google Scholar 

  51. J.M. Garnett, Philos. Trans. R. Soc. Lond. Ser. A 205(387–401), 237–288 (1906)

    CAS  Google Scholar 

  52. J.H. Santeen, D. Polder, Phys. E: Low-dimens. Syst. Nanostruct. 12(5), 257–271 (1946)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Central South University and Iskenderun Technical University for the technical supports.

Funding

This research was funding by the National Key Research and Development Program of China (Grant No. 2017YFA0204600), the National Natural Science Foundation of China (Grant No. 51802352), Central South University (Grant No. 2018zzts355) and Teaching reform for postgraduate students of Central South University (Grant No. 2019JG085).

Author information

Authors and Affiliations

Authors

Contributions

YIA and MK conceived the idea; YIA and HNA performed the simulations; ŞD and FOA performed the experiment; YIA wrote the manuscript, OA, CL, FFM, HL, MA, MB, RKC and SRS revised the manuscript; MK and HL supervise this work. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yadgar I. Abdulkarim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkarim, Y.I., Dalgaç, Ş., Alkurt, F.O. et al. Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration. J Mater Sci: Mater Electron 32, 24258–24272 (2021). https://doi.org/10.1007/s10854-021-06891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06891-6

Navigation