Skip to main content
Log in

Synthesis and fluorescence sensing of energetic materials using benzenesulfonic acid-doped polyaniline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Fluorescence sensing technique for trace detection of High Energy Materials (HEMs) has gained more attention in recent times. In the present paper, the interaction between the fluorophore and HEMs is studied using spectroscopic and electrochemical techniques. The fluorophore polyaniline (PANI) was functionalised by doping it with benzenesulfonic acid (BSA) to increase the processability, and mobility of π-electrons along with decreased π-stacking. It is observed that upon doping the solubility of BSA-PANI is increased, facilitating a higher quenching by commercial explosives, i.e., RDX, CL-20, CL-20:RDX cocrystal. The interaction studies undertaken though fluorescence quenching, FTIR and Resonance Raman studies shows that the benzenoid unit, polaron and bipolaron nitrogen in BSA-PANI interact with nitro groups of HEMs and form a charge-transfer complex between HEMs and BSA-PANI undergoing predominantly a PET mechanism. LOD value is found to be least for Cocrystal (1.876 × 10–5 M) when compared to other HEMs 3.191 × 10–5 M (CL-20), 5.904 × 10–5 M (RDX), 3.734 × 10–5 M (PETN) indicating that cocrystal can be detected in trace level. The collaborative study between cyclic voltammetry and the observed results of fluorescence quenching, revealed that the emeraldine salt form of (BSA-PANI) is sensitive to HEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Zhang, X. Pan, S. Cheng, A. Xie, W. Dong, J. Lumin. 233, 117871 (2021)

    Article  CAS  Google Scholar 

  2. S. Shanmugaraju, S.A. Joshi, P.S. Mukherjee, J. Mater. Chem. 21, 9130–9138 (2011)

    Article  CAS  Google Scholar 

  3. D.S. Moore, Rev. Sci. Instrum. 75, 2499–2512 (2004)

    Article  CAS  Google Scholar 

  4. A.L. Lehnert, K.J. Kearfott, Nucl. Technol. 172, 325–334 (2010)

    Article  CAS  Google Scholar 

  5. J.-S. Yang, T.M. Swager, J. Am. Chem. Soc. 120, 5321–5322 (1998)

    Article  CAS  Google Scholar 

  6. J.-S. Yang, T.M. Swager, J. Am. Chem. Soc. 120, 11864–11873 (1998)

    Article  CAS  Google Scholar 

  7. S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev. 107, 1339–1386 (2007)

    Article  CAS  Google Scholar 

  8. H. Nie, H. Ma, M. Zhang, Y. Zhong, Talanta 144, 1111–1115 (2015)

    Article  CAS  Google Scholar 

  9. H.P. Martinez, C.D. Grant, J.G. Reynolds, W.C. Trogler, J. Mater. Chem. 22, 2908–2914 (2012)

    Article  CAS  Google Scholar 

  10. R. Martínez-Máñez, F. Sancenón, Chem. Rev. 103, 4419–4476 (2003)

    Article  Google Scholar 

  11. L.A. Juárez, A.M. Costero, F. Sancenón, R. Martínez-Máñez, M. Parra, P. Gaviña, Chem. Eur. J. 21, 8720–8722 (2015)

    Article  Google Scholar 

  12. R. Martínez-Máñez, F. Sancenón, J. Fluoresc. 15, 267–285 (2005)

    Article  Google Scholar 

  13. L. Venkatappa, S.A. Ture, C.V. Yelamaggad, V.N.N. Sundaram, R. Martínez-Máñez, V. Abbaraju, ChemistrySelect 5, 6321–6330 (2020)

    Article  CAS  Google Scholar 

  14. V.B. Patil, S.A. Ture, C.V. Yelamaggad, M.N. Nadagouda, A. Venkataraman, Z. Anorg. Allg. Chem. 647, 331–340 (2021)

    Article  CAS  Google Scholar 

  15. M. Rong, L. Lin, X. Song, T. Zhao, Y. Zhong, J. Yan, Y. Wang, Xi. Chen, Anal. Chem. 87, 1288–1296 (2015)

    Article  CAS  Google Scholar 

  16. J. Venkata Viswanath, K.J. Venugopal, N.V. Srinivasa Rao, A. Venkataraman, Def. Technol. 12, 401–418 (2016)

    Article  Google Scholar 

  17. J.V. Viswanath, B. Shanigaram, P. Vijayadarshan, T.V. Chowadary, A. Gupta, K. Bhanuprakash, S.R. Niranjana, A. Venkataraman, Propellants Explos. Pyrotech. 44, 1570–1582 (2019)

    Article  CAS  Google Scholar 

  18. A.G. Macdiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, L.D. Nanaxakkara, S.W. Wu, S.I. Yaniger, Mol. Cryst. Liq. Cryst. 121, 173–180 (1985)

    Article  CAS  Google Scholar 

  19. A.G. MacDiarmid, J.C. Chiang, A.F. Richter, N.L.D. Somasiri, A.J. Epstein, in Conducting polymers. ed. by L. Alcácer (Springer, Dordrecht, 1987), pp. 105–120

    Chapter  Google Scholar 

  20. Z. Morávková, P. Bober, Int. J. Polym. Sci. 2018, 1797216 (2018)

    Article  Google Scholar 

  21. J.E. Pereira da Silva, M.L. Temperini, S.I. Córdoba de Torresi, J. Braz. Chem. Soc. 16, 322–327 (2005)

    Article  CAS  Google Scholar 

  22. M. Trchová, J. Stejskal, Pure Appl. Chem. 83, 1803 (2011)

    Article  Google Scholar 

  23. J. Scotto, M.I. Florit, D. Posadas, Electrochim. Acta 268, 187–194 (2018)

    Article  CAS  Google Scholar 

  24. S.A. Ture, V.B. Patil, C.V. Yelamaggad, R. Martínez-Máñez, V. Abbaraju, J. Appl. Polym. Sci. 138, 50776 (2021)

    Article  CAS  Google Scholar 

  25. G.M. do Nascimento, M.R. Temperini, J. Raman Spectrosc. 39, 772–778 (2008)

    Article  Google Scholar 

  26. M. Jain, S. Annapoorni, Synth. Met. 160, 1727–1732 (2010)

    Article  CAS  Google Scholar 

  27. R. Borah, S. Banerjee, A. Kumar, Synth. Met. 197, 225–232 (2014)

    Article  CAS  Google Scholar 

  28. D. Kumar, M. Iwamoto, Polym. J. 45, 160–165 (2013)

    Article  Google Scholar 

  29. F. Noun, E.A. Jury, R. Naccache, Sensors 21, 1391 (2021)

    Article  CAS  Google Scholar 

  30. Li. Wenfeng, Ma. Hengchang, L. Ziqiang, RSC Adv. 4, 39351–39358 (2014)

    Article  Google Scholar 

  31. S. Pramanik, Z. Hu, X. Zhang, C. Zheng, S. Kelly, J. Li, Chem. Eur. J. 19, 15964–15971 (2013)

    Article  CAS  Google Scholar 

  32. M. Baibarac, A. Matea, M. Daescu, I. Mercioniu, S. Quillard, J.-Y. Mevellec, S. Lefrant, Sci. Rep. 8, 9518 (2018)

    Article  Google Scholar 

  33. C. Albrecht, Anal. Bioanal. Chem. 390, 1223–1224 (2008)

    Article  CAS  Google Scholar 

  34. S. Chatterjee, S. Basu, N. Ghosh, M. Chakrabarty, Chem. Phys. Lett. 388, 79–83 (2004)

    Article  CAS  Google Scholar 

  35. J.Y. Shimano, A.G. MacDiarmid, Synth. Met. 123, 251–262 (2001)

    Article  CAS  Google Scholar 

  36. C.M. Samworth, M. Degli Esposti, G. Lenaz, Eur. J. Biochem. 171, 81–86 (1988)

    Article  CAS  Google Scholar 

  37. Q. Li, X. Tan, Fu. Lingli, Qu. Liu, W. Tang, Anal. Methods 7, 614–620 (2015)

    Article  CAS  Google Scholar 

  38. Wu. Xiaofu, H. Hang, H. Li, Y. Chen, H. Tong, L. Wang, Mater. Chem. Front. 1, 1875–1880 (2017)

    Article  Google Scholar 

  39. M. Do Nascimento Gustavo, in Nanofibers. ed. by A. Kumar (IntechOpen, Rijeka, 2010), pp. 349–366

    Google Scholar 

  40. J. Wang, G. Liu, Wu. Hong, Y. Lin, Anal. Chim. Acta 610, 112–118 (2008)

    Article  CAS  Google Scholar 

  41. A. Üzer, Ş Sağlam, Y. Tekdemir, B. Ustamehmetoğlu, E. Sezer, E. Erçağ, R. Apak, Talanta 115, 768–778 (2013)

    Article  Google Scholar 

  42. H. Gurumallesh Prabu, M.B. Talawar, T. Mukundan, S.N. Asthana, Combust. Explos. Shock Waves 47, 87 (2011)

    Article  Google Scholar 

  43. R. Celiesiute, A. Ramanaviciene, M. Gicevicius, A. Ramanavicius, Crit. Rev. Anal. Chem. 49, 195–208 (2019)

    Article  CAS  Google Scholar 

  44. A. Kausaite-Minkstimiene, L. Glumbokaite, A. Ramanaviciene, A. Ramanavicius, Microchem. J. 154, 104665 (2020)

    Article  CAS  Google Scholar 

  45. S.N. Bhadani, M.K. Gupta, S.K. Gupta, J. Appl. Polym. Sci. 49, 397–403 (1993)

    Article  CAS  Google Scholar 

  46. A. Eftekhari, L. Li, Y. Yang, J. Power Sources 347, 86–107 (2017)

    Article  CAS  Google Scholar 

  47. A. Sumboja, U.M. Tefashe, G. Wittstock, P.S. Lee, Adv. Mater. Interfaces 2, 1400154 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and thank Prof. G. U. Kulkarni, the former Director of Centre for Nano and Soft Matter (CeNS) for providing the facility to work in the centre. The authors, S A Ture and V B Patil, expresses their thanks to M/s Premier Explosive Limited for their Financial support (H/A: 4254), the corresponding author expresses his thanks to UGC, New Delhi for the BSR faculty fellowship [F.4-5(11)/2019(BSR)]. We also thank the Spanish Government [RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE)] and Generalitat Valenciana (PROMETEO2018/024) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataraman Abbaraju.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ture, S.A., Pattathil, S.D., Patil, V.B. et al. Synthesis and fluorescence sensing of energetic materials using benzenesulfonic acid-doped polyaniline. J Mater Sci: Mater Electron 33, 8551–8565 (2022). https://doi.org/10.1007/s10854-021-06537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06537-7

Navigation