Skip to main content

Advertisement

Log in

Phase boundary design and enhanced electrical properties in (Bi0.5Li0.45Ag0.05)(Zr0.98Hf0.02)O3-modified KNN-based lead-free piezoceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For fabricating (K, Na)NbO3-based ceramic, the improved piezoelectric properties can be obtained through phase boundary design. Herein, the (1 − x)K0.48Na0.52Nb0.96Sb0.04O3x(Bi0.5Li0.45Ag0.05)(Zr0.98Hf0.02)O3 lead-free ceramics with rhombohedral-tetragonal (R-T) phase boundary was designed and developed by the conventional pressureless sintering. The relationship between phase structure, surface morphology and electrical properties was systematically investigated. According to phase diagram from XRD and dielectric-temperature measurements, the ceramics exhibit the R-T phase coexistence in the range of 0.035 ≤ x ≤ 0.05. As a result, the optimal comprehensive properties (d33 ~ 343 pC/N, d33* ~ 410 pm/V, TC ~ 270 °C) were achieved in the ceramic with x = 0.035, due to the coexistence of R-T phase caused free energy flatten and energy barrier reduce. These results indicate that the construction of R-T phase coexistence is an effective strategy to improve the electrical properties of KNN-based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Wang, Y. Du, Z. Li, Y. Liu, B. He, C. Cheng, Z. Zhang, Y. Huang, High permittivity and low dielectric loss of (1−x)Bi0.5(Na0.48K0.52)0.5TiO3–xBaZrO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 31, 10038–10046 (2020)

    Article  CAS  Google Scholar 

  2. C.M. Lau, X.W. Xu, K.W. Kwok, Photoluminescence, ferroelectric, dielectric and piezoelectric properties of Er-doped BNT-BT multifunctional ceramics. Appl. Surf. Sci. 336, 314–320 (2015)

    Article  CAS  Google Scholar 

  3. W. Feng, Y. Huang, C. Yang, J. Lu, Y. Huang, Q. Hu, H. Qin, Effects of the addition of Li0.8Ni0.2Nb0.96O3 on the structure and electrical properties of K0.48Na0.52NbO3 lead-free piezoceramics. Mater. Sci. Eng. B 189, 7–12 (2014)

    Article  CAS  Google Scholar 

  4. J. Ma, B. Wu, J. Wu, Phase structure, electrical properties, and component stability in (1−x)K0.40Na0.60Nb0.96Sb0.04O3–x(Bi0.92Nd0.08)0.5Na0.5ZrO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 29, 17209–17216 (2018)

    Article  CAS  Google Scholar 

  5. C. Wang, B. Fang, Y. Qu, Z. Chen, S. Zhang, J. Ding, Preparation of KNN based lead-free piezoelectric ceramics via composition designing and two-step sintering. J. Alloys Compd. 832, 153043 (2020)

    Article  CAS  Google Scholar 

  6. W. Li, J. Hao, P. Fu, J. Du, P. Li, C. Hu, Z. Yue, Large electrostrictive effect and strong photoluminescence properties in Sm2O3-modified lead-free potassium sodium niobate-based piezoelectric ceramics. J. Mater. 6, 768–780 (2020)

    Google Scholar 

  7. Z. Cen, X. Wang, Y. Huan, L. Li, Temperature stability and electrical properties of MnO-doped KNN-based ceramics sintered in reducing atmosphere. J. Am. Ceram. Soc. 101, 2391–2407 (2018)

    Article  CAS  Google Scholar 

  8. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  9. C. Zhou, J. Zhang, W. Yao, D. Liu, W. Su, Highly temperature-stable piezoelectric properties of 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O3–0.03BaZrO3–0.01(Bi0.50Na0.50)ZrO3 ceramic in common usage temperature range. Scr. Mater. 162, 86–89 (2019)

    Article  CAS  Google Scholar 

  10. L. Qiao, G. Li, H. Tao, J. Wu, Z. Xu, F. Li, Full characterization for material constants of a promising KNN-based lead-free piezoelectric ceramic. Ceram. Int. 46, 5641–5644 (2020)

    Article  CAS  Google Scholar 

  11. H. Tao, J. Wu, Optimization of energy storage density in relaxor (K, Na, Bi)NbO3 ceramics. J. Mater. Sci. Mater. Electron. 28, 16199–16204 (2017)

    Article  CAS  Google Scholar 

  12. Z. Li, J. Wu, D. Xiao, J. Zhu, W. Wu, Colossal permittivity in titanium dioxide ceramics modified by tantalum and trivalent elements. Acta Mater. 103, 243–251 (2016)

    Article  CAS  Google Scholar 

  13. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1–9 (2018)

    Google Scholar 

  14. S. Hunpratub, S. Phokha, S. Maensiri, P. Chindaprasirt, Dielectric and piezoelectric properties of lead-free Ba0.85Ca0.15Ti0.9xZr0.1CuxO3 ceramics synthesized by a hydrothermal method. Appl. Surf. Sci. 369, 334–340 (2016)

    Article  CAS  Google Scholar 

  15. Y. Liao, D. Wang, H. Wang, L. Zhou, Q. Zheng, D. Lin, Modulation of defects and electrical behaviors of Cu-doped KNN ceramics by fluorine-oxygen substitution. Dalton Trans. 49, 1311–1318 (2020)

    Article  CAS  Google Scholar 

  16. C. Zhao, B. Wu, J. Wu, Composition-driven broad phase boundary for optimizing properties and stability in lead-free barium titanate ceramics. J. Am. Ceram. Soc. 102, 3477–3487 (2019)

    Article  CAS  Google Scholar 

  17. M.H. Zhang, K. Wang, J.S. Zhou, J.J. Zhou, X. Chu, X. Lv, J. Wu, J.F. Li, Thermally stable piezoelectric properties of (K, Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater. 122, 344–351 (2017). https://doi.org/10.1016/j.actamat.2016.10.011

    Article  CAS  Google Scholar 

  18. Y. Li, Y. Liu, P.E. Öchsner, D. Isaia, Y. Zhang, K. Wang, K.G. Webber, J.F. Li, J. Rödel, Temperature dependent fracture toughness of KNN-based lead-free piezoelectric ceramics. Acta Mater. 174, 369–378 (2019)

    Article  CAS  Google Scholar 

  19. L. Jiang, Y. Li, L. Xie, J. Wu, Q. Chen, W. Zhang, D. Xiao, J. Zhu, Enhanced electrical properties and good thermal stability in K0.48Na0.52NbO3–LiNbO3–BiAlO3 lead-free piezoceramics. J. Mater. Sci. Mater. Electron. 28, 8500–8509 (2017)

    Article  CAS  Google Scholar 

  20. R. Zuo, J. Fu, D. Lv, Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48xLix)(Nb1xySbyTax)O3 system. J. Am. Ceram. Soc. 92, 283–285 (2009)

    Article  CAS  Google Scholar 

  21. Q. Liu, F.Y. Zhu, L. Zhao, K. Wang, L. Li, J.F. Li, W. Jo, Further enhancing piezoelectric properties by adding MnO2 in AgSbO3-modified (Li, K, Na)(Nb, Ta)O3 lead-free piezoceramics. J. Am. Ceram. Soc. 99, 3670–3676 (2016)

    Article  CAS  Google Scholar 

  22. W. Yao, J. Zhang, X. Wang, C. Zhou, X. Sun, J. Zhan, High piezoelectric performance and domain configurations of (K0.45Na0.55)0.98Li0.02Nb0.76 Ta0.18Sb0.06O3 lead-free ceramics prepared by two-step sintering. J. Eur. Ceram. Soc. 39, 287–294 (2019)

    Article  CAS  Google Scholar 

  23. Y. Qin, J. Zhang, W. Yao, C. Lu, S. Zhang, Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3–Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl. Mater. Interfaces 8, 7257–7265 (2016)

    Article  CAS  Google Scholar 

  24. P. Li, Y. Huan, W. Yang, F. Zhu, X. Li, X. Zhang, B. Shen, J. Zhai, High-performance potassium-sodium niobate lead-free piezoelectric ceramics based on polymorphic phase boundary and crystallographic texture. Acta Mater. 165, 486–495 (2019)

    Article  CAS  Google Scholar 

  25. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics. Ceram. Int. 46, 1390–1395 (2020)

    Article  CAS  Google Scholar 

  26. J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015)

    Article  CAS  Google Scholar 

  27. X. Lv, J. Wu, X.X. Zhang, Tuning the covalency of A-O bonds to improve the performance of KNN-based ceramics with multiphase coexistence. ACS Appl. Mater. Interfaces 12, 49795–49804 (2020)

    Article  CAS  Google Scholar 

  28. S. Feng, D. Xiao, J. Wu, F. Li, M. Xiao, J. Zhu, Influence of K/Na ratio on phase structure and electrical properties of 0.96(KxNa1x)NbO3–0.04(Bi0.5Na0.5)ZrO3 lead-free ceramics. J. Electroceram. 34, 142–149 (2015)

    Article  CAS  Google Scholar 

  29. H. Tao, J. Wu, T. Zheng, X. Wang, X. Lou, New (1−x)K0.45Na0.55Nb0.96Sb0.04O3–xBi0.5Na0.5HfO3 lead-free ceramics: phase boundary and their electrical properties. J. Appl. Phys. 118, 0–8 (2015)

    Article  CAS  Google Scholar 

  30. X. Lv, Y. Chen, J. Wu, Temperature-insensitive piezoelectricity in lead-free NaNbO3-based ceramics. J. Am. Ceram. Soc. 101, 5596–5603 (2018)

    Article  CAS  Google Scholar 

  31. Y. Liao, D. Wang, H. Wang, T. Wang, Q. Zheng, J. Yang, K.W. Kwok, D. Lin, Transformation of hardening to softening behaviors induced by Sb substitution in CuO-doped KNN-based piezoceramics. Ceram. Int. 45, 13179–13186 (2019)

    Article  CAS  Google Scholar 

  32. X. Lv, J. Wu, J. Zhu, D. Xiao, X.X. Zhang, Temperature stability and electrical properties in La-doped KNN-based ceramics. J. Am. Ceram. Soc. 101, 4084–4094 (2018)

    Article  CAS  Google Scholar 

  33. F. Rubio-Marcos, M.A. Bañares, J.J. Romero, J.F. Fernandez, Correlation between the piezoelectric properties and the structure of lead-free KNN-modified ceramics, studied by Raman Spectroscopy. J. Raman Spectrosc. 42, 639–643 (2011)

    Article  CAS  Google Scholar 

  34. Y. Zhao, J. Du, Z. Xu, D. Wei, Z. Fu, Y. Wang, Domain evolution and corresponding piezoelectricity of lead-free In2O3-doped K0.5Na0.5NbO3 ceramics together with improved fatigue resistance and temperature stability. Mater. Sci. Eng. B 243, 141–148 (2019)

    Article  CAS  Google Scholar 

  35. Z. Liu, H. Fan, M. Li, High temperature stable dielectric properties of (K0.5Na0.5)0.985Bi0.015Nb0.99Cu0.01O3 ceramics with core–shell microstructures. J. Mater. Chem. C 3, 5851–5858 (2015)

    Article  CAS  Google Scholar 

  36. X. Lv, Z. Li, J. Wu, J. Xi, M. Gong, D. Xiao, J. Zhu, Enhanced piezoelectric properties in potassium-sodium niobate-based ternary ceramics. Mater. Des. 109, 609–614 (2016)

    Article  CAS  Google Scholar 

  37. Z. Liu, H. Fan, S. Lei, X. Ren, C. Long, Duplex structure in K0.5Na0.5NbO3–SrZrO3 ceramics with temperature-stable dielectric properties. J. Eur. Ceram. Soc. 37, 115–122 (2017)

    Article  CAS  Google Scholar 

  38. R. Fisch, Random-field models for relaxor ferroelectric behavior. Phys. Rev. B 67, 1–8 (2003)

    Article  CAS  Google Scholar 

  39. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C 4, 1795–1803 (2016)

    Article  CAS  Google Scholar 

  40. H. Du, D. Liu, F. Tang, D. Zhu, W. Zhou, S. Qu, Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. J. Am. Ceram. Soc. 90, 2824–2829 (2007)

    Article  CAS  Google Scholar 

  41. X. Lv, J. Wu, J. Zhu, D. Xiao, X. Zhangb, A new method to improve the electrical properties of KNN-based ceramics: tailoring phase fraction. J. Eur. Ceram. Soc. 38, 85–94 (2018)

    Article  CAS  Google Scholar 

  42. Z. Tan, J. Zhu, Y. Zhang, J. Xing, Q. Chen, B. Wu, L. Sun, J. Wu, L. Jiang, D. Xiao, Effects of Mo2/3Bi1/3 doping on the phase structure, microstructure, and piezoelectric properties of KNNS-BNZ ceramics. Ceram. Int. 41, 14610–14614 (2015)

    Article  CAS  Google Scholar 

  43. B. Malic, J. Bernard, A. Bencan, M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc. 28, 1191–1196 (2008)

    Article  CAS  Google Scholar 

  44. T. Zheng, J. Wu, D. Xiao, J. Zhu, X. Wang, X. Lou, Composition-driven phase boundary and piezoelectricity in potassium-sodium niobate-based ceramics. ACS Appl. Mater. Interfaces 7, 20332–20341 (2015)

    Article  CAS  Google Scholar 

  45. J. Wu, X. Wang, X. Cheng, T. Zheng, B. Zhang, D. Xiao, J. Zhu, X. Lou, New potassium-sodium niobate lead-free piezoceramic: giant-d33 vs. sintering temperature. J. Appl. Phys. 115, 114104 (2014)

    Article  CAS  Google Scholar 

  46. H. Wang, J. Wu, Evolution of phase structure, microstructure, and electrical properties in (1–x)(K, Na)NbO3–x(Bi, Na, Li, Ba)ZrO3 lead-free ceramics. J. Alloys Compd. 628, 329–334 (2015)

    Article  CAS  Google Scholar 

  47. J. Fu, R. Zuo, Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg, Ti)O3–PbZrO3–PbTiO3 ferroelectric ceramics. Acta Mater. 61, 3687–3694 (2013)

    Article  CAS  Google Scholar 

  48. K. Chen, J. Ma, C. Shi, W. Wu, B. Wu, Enhanced temperature stability in high piezoelectric performance of (K, Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J. Alloys Compd. 852, 156865 (2021)

    Article  CAS  Google Scholar 

  49. B. Wu, J. Ma, Q. Gou, W. Wu, M. Chen, Enhanced temperature stability in the O-T phase boundary of (K, Na)NbO3-based ceramics. J. Am. Ceram. Soc. 103, 1698–1708 (2020)

    Article  CAS  Google Scholar 

  50. D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I.M. Reaney, Composition and temperature dependence of structure and piezoelectricity in (1–x)(K1yNay)NbO3–x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc. (2017). https://doi.org/10.1111/jace.14589

    Article  Google Scholar 

  51. J. Zhang, X. Sun, W. Su, W. Yao, C. Zhou, Superior piezoelectricity and rhombohedral-orthorhombic-tetragonal phase coexistence of (1–x)(K, Na)(Nb, Sb)O3–x(Bi, Na)HfO3 ceramics. Scr. Mater. 176, 108–111 (2020)

    Article  CAS  Google Scholar 

  52. C. Shi, J. Ma, J. Wu, X. Wang, B. Wu, Coexistence of excellent piezoelectric performance and high Curie temperature in KNN-based lead-free piezoelectric ceramics. J. Alloys Compd. 846, 156245 (2020)

    Article  CAS  Google Scholar 

  53. H. Tao, J. Wu, Giant piezoelectric effect and high strain response in (1−x)(K0.45Na0.55)(Nb1ySby)O3–xBi0.5Na0.5Zr1zHfzO3 lead-free ceramics. J. Eur. Ceram. Soc. 36, 1605–1612 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.01.043

    Article  CAS  Google Scholar 

  54. B. Wu, J. Ma, W. Wu, M. Chen, Improved piezoelectricity in ternary potassium-sodium niobate lead-free ceramics with large strain. J. Mater. Chem. C 8, 2838–2846 (2020). https://doi.org/10.1039/c9tc05629g

    Article  CAS  Google Scholar 

  55. W. Liang, W. Wu, D. Xiao, J. Zhu, J. Wu, Construction of new morphotropic phase boundary in 0.94(K0.4xNa0.6BaxNb1xZrx)O3–0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46, 6871–6876 (2011). https://doi.org/10.1007/s10853-011-5650-1

    Article  CAS  Google Scholar 

  56. C. He, X. Bai, J. Wang, Y. Liu, Y. Lu, X. Liu, Y. Xiang, Z. Xu, Y. Chen, Structural, piezoelectric and dielectric properties of K0.4Na0.6NbO3–Bi0.5Li0.5ZrO3–CaZrO3 ternary lead-free piezoelectric ceramics. J. Electron. Mater. 49, 4364–4371 (2020). https://doi.org/10.1007/s11664-020-08174-y

    Article  CAS  Google Scholar 

  57. J. Zhou, G. Xiang, J. Shen, H. Zhang, Z. Xu, H. Li, P. Ma, W. Chen, Composition-insensitive enhanced piezoelectric properties in SrZrO3 modified (K, Na)NbO3-based lead-free ceramics. J. Electroceram. 44, 95–103 (2020). https://doi.org/10.1007/s10832-019-00195-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Science and Technology Development Plan Project of Shandong Province, China (Grant no. 2013GSF11714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Du, Y., Liu, Y. et al. Phase boundary design and enhanced electrical properties in (Bi0.5Li0.45Ag0.05)(Zr0.98Hf0.02)O3-modified KNN-based lead-free piezoceramic. J Mater Sci: Mater Electron 32, 18240–18250 (2021). https://doi.org/10.1007/s10854-021-06367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06367-7

Navigation