Skip to main content
Log in

Complex electrical impedance and modulus characterizations of ZnO:Sn thin films in a wide temperature range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, pure zinc oxide (ZnO) and tin-doped zinc oxide (Zn1−xSnxO) thin films were synthesized using successive ionic layer adsorption and reaction (SILAR) method in 40 cycles with doping ratios x = 0.05, 0.10, 0.15, and 0.20. Subsequently, structural, optical, and electrical characteristics of all synthesized thin films were properly investigated by the appropriate techniques. For structural characterizations, X-ray diffraction (XRD) technique was employed, and the data demonstrated the appropriate hexagonal wurtzite structure of the synthesized thin films and predicted the decrease of crystallite size with Sn doping. Likewise, optical characterizations were carried out through ultraviolet–visible (UV–Vis) technique, and the data showed good transparency of ZnO thin film and confirmed the increase in transparency and bandgap upon Sn doping. Additionally, to probe the electrical aspects of the synthesized thin films, impedance, modulus, and conductivity analyses were carried out as a function of frequency in a wide temperature range (450–750 K). The results demonstrated the critical effect of temperature and Sn doping ratio in ZnO thin films. At high enough temperatures, inductive effects became evident in the low-frequency region of all the thin films. And at all temperatures, 5 wt%- and 10 wt%-doped films exhibited extreme responses in the investigated doping range, where the former and the latter showed, respectively, highest and lowest conductivity as well as lowest and highest possibility of grain effects in the film structure. This behavior was confirmed using two different analysis techniques with two separate data sets, (Z, θ) and (C, G).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Andolsi, F. Chaabouni, M. Abaab, J. Mater. Sci. 28, 8347–8358 (2017)

    CAS  Google Scholar 

  2. J.B. Baxter, E.S. Aydil, Sol. En. Mater. Sol. Cells 90, 607–622 (2006)

    Article  CAS  Google Scholar 

  3. E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Gonçalves, R. Martins, Phys. Stat. Sol. 1, R34 (2007)

    CAS  Google Scholar 

  4. L. Qiang, X. Liang, Y. Pei, R. Yao, G. Wang, Thin Solid Films 649, 51–56 (2018)

    Article  CAS  Google Scholar 

  5. T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda, Y. Suzuki, N. Otogawa, T. Mise, S. Wang, Y. Hoshino, Y. Nakayama, H. Tanoue, Y. Makita, Thin Solid Films 476, 30–34 (2005)

    Article  CAS  Google Scholar 

  6. S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuat. B 107, 379–386 (2005)

    Article  CAS  Google Scholar 

  7. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X. Du, Phys. Rev. B 93, 235305 (2016)

    Article  Google Scholar 

  8. T. Prakash, R. Jayaprakash, C. Espro, G. Neri, E.R. Kumar, J. Mater. Sci. 49, 1776–1784 (2014)

    Article  CAS  Google Scholar 

  9. I. Karaduman, A.O. Çağırtekin, T. Çorlu, M.A. Yıldırım, A. Ateş, S. Acar, Bull. Mater. Sci. 10, 32–42 (2019)

    Article  Google Scholar 

  10. F. Zahedi, R.S. Dariani, S.M. Rozati, Bull. Mater. Sci. 37, 433–439 (2014)

    Article  CAS  Google Scholar 

  11. V.K. Anand, S.C. Sood, A. Sharma, A.I.P. Conf, Proc. 399, 1324 (2010)

    Google Scholar 

  12. L.H. Kathwate, G. Umadevi, P.M. Kulal, P. Nagaraju, D.P. Dubal, A.K. Nanjundan, V.D. Mote, Sens. Actuat. A 313, 112193 (2020)

    Article  CAS  Google Scholar 

  13. N. Nagayasamy, S. Gandhimathination, V. Veerasamy, Open J. Met. 3, 8–11 (2013)

    Article  Google Scholar 

  14. T. Yıldırım, E. Gür, S. Tüzemen, V. Bilgin, S. Köşe, F. Atay, I. Akyüz, Phys. E. 27, 290–295 (2005)

    Article  Google Scholar 

  15. M. Coskun, O. Polat, F.M. Coskun, B. Zengin Kurt, Z. Durmus, M. Caglar, A. Turut, Mater. Sci. Elect. 31, 1731–1744 (2020)

    Article  CAS  Google Scholar 

  16. A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallee, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D 46, 065308 (2013)

    Article  CAS  Google Scholar 

  17. L.D. Mosgaard, K.A. Zecchi, T. Heimburg, R. Budvytyte, Membranes 5, 495–512 (2015)

    Article  CAS  Google Scholar 

  18. G.J. Brug, A.L.G. Van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. Inter. Electrochem. 176, 275–295 (1984)

    Article  CAS  Google Scholar 

  19. S. Mourad, J. El Ghoul, K. Khirouni, J. Mater. Sci. 31, 6372–6384 (2020)

    CAS  Google Scholar 

  20. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, Z. Durmus, M. Caglar, A. Turut, Mater. Res. Bull. 124, 110759 (2020)

    Article  CAS  Google Scholar 

  21. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Alloy Compd 752, 274–288 (2018)

    Article  CAS  Google Scholar 

  22. S. Karmakar, S. Varma, D. Behera, J. Alloy Compd 757, 49–59 (2018)

    Article  CAS  Google Scholar 

  23. M. Azizar-Rahman, A.K.M. Akther-Hossain, Phys. Scr. 89, 025803 (2014)

    Article  Google Scholar 

  24. Ch. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139 (2018)

    Article  CAS  Google Scholar 

  25. A.K. Pradhan, T.K. Nath, S. Saha, Mater. Res. Exp. 4, 076107 (2017)

    Article  Google Scholar 

  26. P. Choudhary, P. Saxena, A. Yadav, V.N. Rai, A. Mishra, Ionics 25, 4991–5001 (2019)

    Article  CAS  Google Scholar 

  27. M. Chandrasekhar, D.K. Khatua, R. Pattanayak, P. Kumar, J. Phys. Chem. Sol. 111, 160–166 (2017)

    Article  CAS  Google Scholar 

  28. G.R. Gajula, L.R. Buddiga, K.N. Chidambara Kumar, Res. Phys. 17, 103076 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with Project No. 115M658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Karaduman Er.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, I.K., Çağırtekin, A.O., Ajjaq, A. et al. Complex electrical impedance and modulus characterizations of ZnO:Sn thin films in a wide temperature range. J Mater Sci: Mater Electron 32, 13594–13609 (2021). https://doi.org/10.1007/s10854-021-05935-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05935-1

Navigation