Skip to main content
Log in

The Dependence of the Gas Sensing Properties of ZnO Thin Films on the Zinc Concentration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, a series of ZnO thin films were grown successively by hydrothermal method, and their structural, morphological and CO2 gas sensing properties were investigated depending on the zinc concentration in the range between 0.01 and 0.08 M. Average crystallite size of the samples was between 65 and 60 nm, which were estimated by Debye–Scherrer formulation, these values decreased by the increasing zinc concentration. The resistance of the films decreased from 2.3 × 1010 Ω to 1.1 × 109 Ω by increasing zinc concentration. The maximum CO2 gas response increased from 87 to 234%, when concentration changing from 0.01 to 0.06 M, then the response began to decrease for 0.07 M. The maximum response was calculated as 234% for 50 ppm CO2 gas at 190 °C temperature. Gas sensing results of 0.06 M towards 100 ppb CO2 gas were indicated that good stability, reducibility and repeatability were determined. When the CO2 sensing mechanism was investigated in detail, suggesting that increasing zinc concentration had an effect on the particle size, surface images and thereby improved CO2 gas sensing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Ahmad, S. Manzoor, M. Talib, S.S. Islam, P. Mishra, Mater. Sci. Eng. B 255, 114528 (2020)

    Article  CAS  Google Scholar 

  2. World Meteorological Organization Press Release. Publ. 25 November 2019, No. 25112019. https://public.wmo.int/en/media/press-release/greenhouse-gasconcentrations-atmosphere-reach-yet-another-high. Accessed 25 Nov 2019

  3. M. Mullan, Food Packag. Technol. 303, 13 (2003)

    Google Scholar 

  4. A.D. Igalavithana, S.W. Choi, P.D. Dissanayake, J. Shang, C.-H. Wang, X. Yang, S. Kim, D.C.W. Tsang, K. Bong Lee, Y. Sik Ok, J. Hazard. Mater. 3915, 121147 (2020)

    Article  CAS  Google Scholar 

  5. S. Mohammad-Yousefi, S. Rahbarpour, H. Ghafoorifard, Mater. Chem. Phys. 227, 148–150 (2019)

    Article  CAS  Google Scholar 

  6. D. Li, Y. Tang, D. Ao, X. Xiang, S. Wang, X. Zu, Int. J. Hydrog. Energy 44(7), 3985–3992 (2019)

    Article  CAS  Google Scholar 

  7. Y. Chen, M. Zhou, Z. Dong, A. Natan, S. Chen, Y. Yang, X. Huang, Y. Yang, Appl. Phys. A 126, 33 (2020)

    Article  CAS  Google Scholar 

  8. H.-J. Lim, D.Y. Lee, Y.-J. Oh, Sensor. Actuators A 125, 405–410 (2006)

    Article  CAS  Google Scholar 

  9. S. Nundy, T.-Y. Eom, K.-Y. Song, J.-S. Park, H.-J. Lee, Ceram. Int 46(11), 9354–19364 (2020)

    Article  CAS  Google Scholar 

  10. C. Wang, Chem. Phys. Lett. 749, 137471 (2020)

    Article  CAS  Google Scholar 

  11. A. Lei, B. Qu, W.C. Zhou, Y. Wang, Q. Zhang, B. Zou, Mater. Lett. 66, 72–75 (2012)

    Article  CAS  Google Scholar 

  12. L. Song, H. Yue, H. Li, L. Liu, Y. Li, Chem. Phys. Lett. 699, 1–7 (2018)

    Article  CAS  Google Scholar 

  13. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Sensor. Actuator B 292, 24–31 (2019)

    Article  CAS  Google Scholar 

  14. S.D. Shinde, G.E. Patil, D.D. Kajale, D.V. Ahire, V.B. Gaikwad, G.H. Jain, Int. J. Smart Sens. Intell. Syst. 5, 1 (2012)

    Google Scholar 

  15. Q. Zhou, W. Chen, S. Peng, W. Zeng, Sci. World J. 489170, 1–8 (2014)

    Google Scholar 

  16. Y. Zeng, T. Zhang, L. Qiao, Mater. Lett. 63, 843–846 (2009)

    Article  CAS  Google Scholar 

  17. I. Karaduman Er, A.O. Çagirtekin, T. Çorlu, M.A. Yildirim, A. Ateş, S. Acar, Bull. Mater. Sci. 42, 32 (2019)

    Article  CAS  Google Scholar 

  18. F. Özütok, I. Karaduman Er, S. Acar, S. Demiri, J. Mater. Sci.: Mater. Electron. 30(1), 259–265 (2019)

    Google Scholar 

  19. S. Galioglu, I. Karaduman, T. Çorlu, B. Akata, M.A. Yıldırım, A. Ateş, S. Acar, J. Mater. Sci.: Mater. Electron. 29, 1356–1368 (2018). https://doi.org/10.1007/s10854-017-8042-8

    Article  CAS  Google Scholar 

  20. N.L. Myadam, D.Y. Nadargi, J.D. Guravadargi, F.I. Shaikh, S.S. Suryavanshi, M.G. Chaskar, Inorg. Chem. Commun. 116, 107901 (2020)

    Article  CAS  Google Scholar 

  21. X. Kou, F. Meng, K. Chen, T. Wang, P. Sun, F. Liu, X. Yan, Y. Sun, F. Liu, K. Shimanoe, G. Lu, Sensor. Actuators B 320, 128292 (2020)

    Article  CAS  Google Scholar 

  22. P.F. Cao, S.Y. Ma, X.L. Xu, B.J. Wang, O. Almamoun, T. Han, X.H. Xu, S.T. Pei, R. Zhang, J.L. Zhang, W.W. Liu, Vacuum 177, 109359 (2020)

    Article  CAS  Google Scholar 

  23. S. Rajamanickam, S.M. Mohammad, Z. Hassan, Coll. Interface Sci. Commun. 38, 100312 (2020)

    Article  CAS  Google Scholar 

  24. S.F.U. Farhad, N.I. Tanvir, M.S. Bashar, M.S. Hossain, M. Sultana, N. Khatun, Bangladesh J. Sci. Ind. Res. 53(4), 233–244 (2018)

    Article  CAS  Google Scholar 

  25. S. Marouf, A. Beniaiche, H. Guessas, A. Aziz, Mater. Res. 20(1), 88–95 (2017)

    Article  CAS  Google Scholar 

  26. J. Huang, H. Ren, P. Sun, C. Gu, Y. Sun, J. Liu, Sensor. Actuator B. 188, 249–256 (2013)

    Article  CAS  Google Scholar 

  27. C. Gu, J. Huang, Y. Wu, M. Zhai, Y. Sun, J. Liu, J. Alloys Compd. 509, 4499–4504 (2011)

    Article  CAS  Google Scholar 

  28. M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, Sensor. Actuators B 157, 565–574 (2011)

    Article  CAS  Google Scholar 

  29. W. Li, E. Shi, W. Zhong, Z. Yin, J. Cryst. Growth 203, 186–196 (1999)

    Article  CAS  Google Scholar 

  30. K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, K.H. Tam, W.K. Ge, J. Phys. Chem. B 110, 20865–20871 (2006)

    Article  CAS  Google Scholar 

  31. A.C. García-Velasco, A. Báez-Rodríguez, M. Bizarro, L. García-González, J. Hernández-Torres, L. Zamora, Nanotechnology 31, 20 (2020)

    Article  CAS  Google Scholar 

  32. T. Strachowski, E. Grzanka, W. Lojkowski, A. Presz, M. Godlewski, S. Yatsunenko, H. Matysiak, R.R. Piticescu, C.J. Monty, J. Appl. Phys. 102, 073513 (2007)

    Article  CAS  Google Scholar 

  33. S. Vempati, J. Mitra, P. Dawson, Nanoscale Res. Lett. 7, 470 (2012)

    Article  Google Scholar 

  34. M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials 3, 2643–2667 (2010). https://doi.org/10.3390/ma3042643

    Article  CAS  Google Scholar 

  35. A.B. Khatibani, Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01689-4

    Article  Google Scholar 

  36. M. Reddeppa, T.K. Phung Nguyen, B.-G. Park, S.-G. Kim, M.-D. Kim, Phys. E 116, 113725 (2020)

    Article  CAS  Google Scholar 

  37. Y. Yong, H. Cui, Q. Zhou, X. Su, Y. Kuang, X. Li, J. Phys. Chem. Solids 127, 68–75 (2019)

    Article  CAS  Google Scholar 

  38. N.L. Tarwal, A.R. Patil, N.S. Harale, A.V. Rajgure, S.S. Suryavanshi, W.R. Bae, J. Alloys Compd. 598, 282 (2014)

    Article  CAS  Google Scholar 

  39. S.H. Yan, S.Y. Ma, W.Q. Li, X.L. Xu, L. Cheng, H.S. Song, Sens. Actuators B 221, 88 (2015)

    Article  CAS  Google Scholar 

  40. T.V.K. Karthik, L. Martinez, V. Agarwal, J. Alloys Compd. 731, 853–863 (2018)

    Article  CAS  Google Scholar 

  41. K. Yadav, S.K. Gahlaut, B.R. Mehta, J.P. Singh, Appl. Phys. Lett. 108, 071602 (2016)

    Article  CAS  Google Scholar 

  42. D. Berger, A.P. de Moura, L.H. Oliveira, W.B. Bastos, F.A. La Porta, I.L.V. Rosa, M.S. Li, S.M. Tebcherani, E. Longo, J.A. Varela, Ceram. Int. 42, 13555–13561 (2016)

    Article  CAS  Google Scholar 

  43. N. Han, X. Wu, L. Chai, H. Liu, Y. Chen, Sens. Actuators B Chem. 150, 230–238 (2010)

    Article  CAS  Google Scholar 

  44. Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, J. Phys. Chem. C. 113, 3430–3435 (2009). https://doi.org/10.1021/jp8092258

    Article  CAS  Google Scholar 

  45. D. Gu, X. Wang, W. Liu, X. Li, S. Lin, J. Wanga, M.N. Rumyantseva, A.M. Gaskov, S.A. Akbar, Sens. Actuators B 305, 127455 (2020)

    Article  CAS  Google Scholar 

  46. S. Joshi, A. Jones Lathe, M. Sabri Ylias, S.K. Bhargava, M.V. Sunkara, S.J. Ippolito, J. Coll. Interface Sci. 558(15), 310–322 (2020)

    Article  CAS  Google Scholar 

  47. Y.M. Hunge, A.A. Yadav, S.B. Kulkarni, V.L. Mathe, Sens. Actuators B 274, 1–9 (2018)

    Article  CAS  Google Scholar 

  48. F. Pantò, S.G. Leonardi, E. Fazio, P. Frontera, A. Bonavita, G. Neri, P. Antonucci, F. Neri, S. Santangelo, Nanotechnology 29, 305501 (2018)

    Article  CAS  Google Scholar 

  49. S. Agarwal, P. Rai, E. Navarrete Gatell, E. Llobet, F. Güelle, M. Kumara, K. Awasth, Sens. Actuators B Chem. 292, 24–31 (2019)

    Article  CAS  Google Scholar 

  50. S. Roso, F. Güell, P.R. Martínez-alanis, A. Urakawa, E. Llobet, Sens. Actuators B Chem. 230, 109–114 (2016). https://doi.org/10.1016/j.snb.2016.02.048

    Article  CAS  Google Scholar 

  51. M. Habib, S.S. Hussain, S. Riaz, S. Naseem, Mater. Today: Proc. 2, 5714–5719 (2015)

    Google Scholar 

  52. Y.-J. Jeong, C. Balamurugan, D.-W. Lee, Sens. Actuators B 229, 288–296 (2016)

    Article  CAS  Google Scholar 

  53. P. Samarasekara, N. Yapa, N. Kumara, M.V.K. Perera, Bull. Mater. Sci. 30(2), 113–116 (2007)

    Article  CAS  Google Scholar 

  54. H. Shokry Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, I. Ali, Beni-suef Univ. J. Basic Appl. Sci. 3, 216–221 (2014)

    Google Scholar 

  55. M. Ghobadifard, Q. Maleki, M. Khelghati, E. Zamani, S. Farhadi, A. Aslani, Iran. Chem. Commun. 3, 26–40 (2015)

    Google Scholar 

  56. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Ceram. Int. 40(8), 13115–13122 (2014)

    Article  CAS  Google Scholar 

  57. S. Joshi, L.A. Jones, Y.M. Sabri, S.K. Bhargava, M.V. Sunkara, S.J. Ippolito, J. Coll. Interface Sci. 558, 310–322 (2019)

    Article  CAS  Google Scholar 

  58. T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, Nanotechnology 22, 325501 (2011)

    Article  CAS  Google Scholar 

  59. M.A. Basyooni, M. Mohamed Shaban, M.A. El-Sayed, Sci. Rep. 7, 41716 (2017)

    Article  CAS  Google Scholar 

  60. S.E. Zaki, M.A. Basyooni, M. Shaban, M. Rabia, Y.R. Eker, G.F. Attia, M. Yılmaz, A.M. Ahmed, Sens. Actuators B 294, 17–24 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Karaduman Er.

Ethics declarations

Conflict of interest

This manuscript has been written by the stated authors who are all aware of its content and approve its submission. There is no conflict of interest exists about this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaduman Er, I., Yıldız, İ.A., Bayraktar, T. et al. The Dependence of the Gas Sensing Properties of ZnO Thin Films on the Zinc Concentration. J Mater Sci: Mater Electron 32, 8122–8135 (2021). https://doi.org/10.1007/s10854-021-05534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05534-0

Navigation