Skip to main content

Advertisement

Log in

The effect of Nb2O5 on waste soda‐lime glass in gamma‐rays shielding applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent waste soda-lime glass (SLS) reinforced with Nb2O5 (0.005, 0.05, and 0.5 wt%) was successfully synthesized using a conventional melting technique for gamma-radiation attenuation applications. The synthesized glass series (RG, RGN1 to RGN3) were then subjected to some physical, optical, and radiation shielding measurements. The physical measurements and computations showed that the increasing content of Nb2O5 increased glass density (ρglass), molar volume (Vm), and oxygen molar volume (OMV), however, decreased oxygen-packing density (OPD). Moreover, several optical parameters, such as the refractive index (n), dielectric constant (ϵ), and metallization criterion (M), were evaluated. One can say that the optical and physical properties can be improved owing to the addition of Nb2O5 in waste SLS glass. The gamma-ray transmission method was utilized to measure the linear attenuation coefficient (LAC) for the fabricated RGN glass series for gamma-photon energies 0.662, 1.173, and 1.332 MeV emitted from 137Cs and 60Co, respectively. The accuracy of the obtained results was tested by comparing the experimental data with those simulated by MCNP-5 and those computed theoretically by XCOM. The obtained results showed agreement between the experimental measurements, simulated, and theoretical evaluations. We found that the photons with energy of 0.662 MeV have a lower penetration power. Thus, the LACs are higher at 0.662 MeV for all synthesized glass samples. The LAC values at 0.662 MeV were between 0.1849 and 0.2253 cm− 1 for the glass samples RG and RGN3. The LAC results depicted a significant relationship between the chemical composition and the synthesized glass series’ attenuation coefficients. The LAC’s measured values were enhanced with the insertion of the niobium pentoxide (Nb2O5) contents. The half-value layer (HVL, ∆0.5) was calculated for the synthesized glass series based on the measured LAC. The thinner ∆0.5 layers were achieved at 0.662 MeV and ranged between 3.077 and 3.748 cm for the glasses coded as RGN3 and RG, respectively, while the thicker ∆0.5 layers were found at 1.332 MeV and changed in the range of 4.306–4.914 cm. The influence of the Nb2O5 doping ratio was examined, and we found that the values of the ∆0.5 layers become thinner as the Nb2O5 doping ratio increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.S. Abouhaswa, H.M.H. Zakaly, S.A.M. Issa, M. Pyshkina, R. El-Mallawany, M.Y.A. Mostafa, Lead borate glasses and synergistic impact of lanthanum oxide additive: optical and nuclear radiation shielding behaviors. J. Mater. Sci. Mater. Electron. 31(17), 14494–14501 (2020). https://doi.org/10.1007/s10854-020-04009-y

    Article  CAS  Google Scholar 

  2. M. Eshghi, Investigation of radiation protection features of the TeO2–B2O3–Bi2O3–Na2O–NdCl3 glass systems. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04202-z

    Article  Google Scholar 

  3. M.I. Sayyed et al., Novel tellurite glass (60-x)TeO2–10GeO2 -20ZnO–10BaO - xBi2O3 for radiation shielding. J. Alloys Compd. 844, 155668 (2020). https://doi.org/10.1016/j.jallcom.2020.155668

    Article  CAS  Google Scholar 

  4. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  CAS  Google Scholar 

  5. A.S. Abouhaswa, M.I. Sayyed, S. Abeer, Y. Altowyan, K.A. Al-Hadeethi, Mahmoud, Evaluation of optical and gamma ray shielding features for tungsten-based bismuth borate glasses. Opt. Mater. 106, 109981 (2020)

    Article  CAS  Google Scholar 

  6. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018)

    Article  Google Scholar 

  7. H. Eskalen, Y. Kavun, S. Kerli, S. Eken, An investigation of radiation shielding properties of boron doped ZnO thin films. Opt. Mater. 105, 109871 (2020)

    Article  CAS  Google Scholar 

  8. S.A. Tijani, Y. Al-Hadeethi, The influence of TeO2 and Bi2O3 on the shielding ability of lead-free transparent bismuth tellurite glass at low gamma energy range. Ceram. Int. 45(17), 23572–23577 (2019). https://doi.org/10.1016/j.ceramint.2019.08.066

    Article  CAS  Google Scholar 

  9. E.E. Altunsoy, H.O. Tekin, A. Mesbahi, I. Akkurt, MCNPX simulation for radiation dose absorption of anatomical regions and some organs. Acta Phys. Pol. A 137(4), 561–565 (2020). https://doi.org/10.12693/aphyspola.137.561

    Article  CAS  Google Scholar 

  10. E. Salama, A. Maher, G.M. Youssef, Gamma radiation and neutron shielding properties of transparent alkali borosilicate glass containing lead. J. Phys. Chem. Solids 131, 139–147 (2019). https://doi.org/10.1016/j.jpcs.2019.04.002

    Article  CAS  Google Scholar 

  11. E. Zorla et al., Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron. Nucl. Eng. Des. 313, 306–318 (2017). https://doi.org/10.1016/j.nucengdes.2016.12.029

    Article  CAS  Google Scholar 

  12. K.S. Mann, γ-ray shielding behaviors of some nuclear engineering materials. Nucl. Eng. Technol. 49(4), 792–800 (2017). https://doi.org/10.1016/j.net.2016.12.016

    Article  CAS  Google Scholar 

  13. G. Lakshminarayana et al., Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.08.180

    Article  Google Scholar 

  14. ISO - ISO 4037-1:2019 - Radiological protection—X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy—Part 1: Radiation characteristics and production methods. https://www.iso.org/standard/66872.html. Accessed 03 Apr 2020

  15. M. Hasanuzzaman, A. Rafferty, M. Sajjia, A.-G. Olabi, Properties of glass materials. Ref. Modul. Mater. Sci. Mater. Eng. (2016). https://doi.org/10.1016/b978-0-12-803581-8.03998-9

    Article  Google Scholar 

  16. S. Yasmin, Z.S. Rozaila, M.U. Khandaker, B.S. Barua, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Eff. Defects Solids 173(7–8), 657–672 (2018)

    Article  CAS  Google Scholar 

  17. A.K. Varshneya, J.C. Mauro, Fundamentals of Inorganic Glass Making (Elsevier, Amsterdam, 2019).

    Book  Google Scholar 

  18. R. Kurtulus, T. Kavas, I. Akkurt, K. Gunoglu, An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3- and Sb2O3-added waste soda-lime-silica glass. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.188

    Article  Google Scholar 

  19. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236 (2017). https://doi.org/10.1016/j.jallcom.2017.08.237

    Article  CAS  Google Scholar 

  20. O. Agar et al., Evaluation of the shielding parameters of alkaline earth based phosphate glasses using MCNPX code. Results Phys. 12, 101–106 (2019). https://doi.org/10.1016/j.rinp.2018.11.054

    Article  Google Scholar 

  21. M.I. Sayyed, K.M. Kaky, E. Şakar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses. J. Non Cryst. Solids 512, 33–40 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.014

    Article  CAS  Google Scholar 

  22. F.I. El-Agawany, K.A. Mahmoud, E. Kavaz, R. El-Mallawany, Y.S. Rammah, Evaluation of nuclear radiation shielding competence for ternary Ge–Sb–S chalcogenide glasses. Appl. Phys. A Mater. Sci. Process. 126(4), 1–11 (2020). https://doi.org/10.1007/s00339-020-3426-7

    Article  CAS  Google Scholar 

  23. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 688, 111–117 (2016). https://doi.org/10.1016/j.jallcom.2016.07.153

    Article  CAS  Google Scholar 

  24. R. Kurtulus, T. Kavas, Investigation on the physical properties, shielding parameters, glass formation ability, and cost analysis for waste soda-lime-silica (SLS) glass containing SrO. Radiat. Phys. Chem. 176, 109090 (2020). https://doi.org/10.1016/j.radphyschem.2020.109090

    Article  CAS  Google Scholar 

  25. J.A.M. Santos, A.L. Bastos, J. Lencart, A.G. Dias, M.F. Carrasco, Low Cost Alternative to Lead Glass Shielding in PET/CT Control/Scanner Room. Window World Congress on Medical Physics and Biomedical Engineering (Springer, Berlin, 2009), pp. 447–450. https://doi.org/10.1007/978-3-642-03902-7_126

    Book  Google Scholar 

  26. J.D. Musgraves, J. Hu, L. Calvez, Springer Handbook of Glass (Springer, Berlin, 2019).

    Book  Google Scholar 

  27. H. Isa, The need for waste management in the glass industries: a review. Sci. Res. Essays 3(7), 276–279 (2008)

    Google Scholar 

  28. G. Hole, A.S. Hole, Recycling as the way to greener production: a mini review. J. Clean. Prod. 212, 910–915 (2019). https://doi.org/10.1016/j.jclepro.2018.12.080

    Article  Google Scholar 

  29. P.A. Bingham, M. Marshall, Reformulation of container glasses for environmental benefit through lower melting temperatures. Glas. Technol. 46(1), 11–19 (2005)

    CAS  Google Scholar 

  30. M. Vellini, M. Savioli, Energy and environmental analysis of glass container production and recycling. Energy 34(12), 2137–2143 (2009). https://doi.org/10.1016/j.energy.2008.09.017

    Article  CAS  Google Scholar 

  31. E.R. Vieitez, P. Eder, A. Villanueva, H. Saveyn, End-of-waste criteria for glass cullet: technical proposals. JRC Sci. Tech. Rep. (2011). https://doi.org/10.2791/7150

    Article  Google Scholar 

  32. M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, S.A.M. Issa, Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 28(5), 4064–4074 (2017). https://doi.org/10.1007/s10854-016-6022-z

    Article  CAS  Google Scholar 

  33. P. Chimalawong, J. Kaewkhao, C. Kedkaew, P. Limsuwan, Optical and electronic polarizability investigation of Nd3+-doped soda-lime silicate glasses. J. Phys. Chem. Solids 71(7), 965–970 (2010). https://doi.org/10.1016/j.jpcs.2010.03.044

    Article  CAS  Google Scholar 

  34. S.A. Tijani et al., Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloys Compd. 741, 293–299 (2018). https://doi.org/10.1016/j.jallcom.2018.01.109

    Article  CAS  Google Scholar 

  35. O.I. Sallam, A.M. Madbouly, N.A. Elalaily, F.M. Ezz-Eldin, Physical properties and radiation shielding parameters of bismuth borate glasses doped transition metals. J. Alloys Compd. 843, 156056 (2020). https://doi.org/10.1016/j.jallcom.2020.156056

    Article  CAS  Google Scholar 

  36. Y. Al-Hadeethi, M.I. Sayyed, O. Agar, Ionizing photons attenuation characterization of quaternary tellurite–zinc–niobium–gadolinium glasses using Phy-X/PSD software. J. Non Cryst. Solids 538, 120044 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120044

    Article  CAS  Google Scholar 

  37. A.N. D’Souza et al., Role of Bi2O3 in altering the structural, optical, mechanical, radiation shielding and thermoluminescence properties of heavy metal oxide borosilicate glasses. J. Non Cryst. Solids 542, 120136 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120136

    Article  CAS  Google Scholar 

  38. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736–1740 (1996). https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  39. I. Akkurt, S.S. Arda, K. Gunoglu, Variation of energy resolution with distance for a NaI(Tl) detector. Acta Phys. Pol. A 128, 422 (2015)

    Article  Google Scholar 

  40. I. Akkurt et al., Monte Carlo simulation of a NaI(Tl) detector efficiency. Radiat. Phys. Chem. 176, 109081 (2020). https://doi.org/10.1016/j.radphyschem.2020.109081

    Article  CAS  Google Scholar 

  41. I. Akkurt, K. Gunoglu, S.S. Arda, Detection efficiency of NaI(Tl) detector in 511–1332 keV Energy Range. Sci. Technol. Nucl. Install. (2014). https://doi.org/10.1155/2014/186798

    Article  Google Scholar 

  42. Yonca Yahşi Çelen, Synthesis and characterizations of magnetite–borogypsum for radiation shielding. Emerg. Mater. Res. (2020). https://doi.org/10.1680/jemmr.20.00098

    Article  Google Scholar 

  43. I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy 36, 1702–1705 (2009). https://doi.org/10.1016/j.anucene.2009.09.005

    Article  CAS  Google Scholar 

  44. A.S. Abouhaswa, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Direct influence of mercury oxide on structural, optical and shielding properties of a new borate glass system. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.112

    Article  Google Scholar 

  45. R. Divina, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Physical and structural effect of modifiers on dysprosium ions incorporated boro-tellurite glasses for radiation shielding purposes. Ceram. Int. 46, 17929–17937 (2020). https://doi.org/10.1016/j.ceramint.2020.04.102

    Article  CAS  Google Scholar 

  46. K.A. Mahmoud, E. Lacomme, M.I. Sayyed, Ö.F. Özpolat, O.L. Tashlykov, Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon 6, e03560 (2020)

    Article  CAS  Google Scholar 

  47. Y. Al-Hadeethi, M.I. Sayyed, H. Mohammed, L. Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 46, 251–257 (2020)

    Article  CAS  Google Scholar 

  48. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X / PSD software. Ceram. Int. 46, 6136–6140 (2020)

    Article  CAS  Google Scholar 

  49. K. Kaur, K.J. Singh, V. Anand, Structural properties of Bi2O3-B2O3-SiO2-Na2O glasses for gamma ray shielding applications. Radiat. Phys. Chem. 120, 63–72 (2016). https://doi.org/10.1016/j.radphyschem.2015.12.003

    Article  CAS  Google Scholar 

  50. S. Tuscharoen, S. Ruengsri, J. Kaewkhao, Development of barium borosilicate glass using rice husk ash: effect of Bao. Adv. Mater. Res. 770, 201–204 (2013). https://doi.org/10.4028/www.scientific.net/AMR.770.201

    Article  CAS  Google Scholar 

  51. F. Laariedh, M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, T.B. Badeche, Studies on the structural, optical and radiation shielding properties of (50–x) PbO – 10WO3–10 Na2O–10MgO–(20 + x)B2O3 glasses. J. Non Cryst. Solids 513, 159–166 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.007

    Article  CAS  Google Scholar 

  52. A.S. Abouhaswa, M.I. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K.A. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program. J. Non Cryst. Solids 543, 120134 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taner Kavas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtulus, R., Kavas, T., Mahmoud, K.A. et al. The effect of Nb2O5 on waste soda‐lime glass in gamma‐rays shielding applications. J Mater Sci: Mater Electron 32, 4903–4915 (2021). https://doi.org/10.1007/s10854-020-05230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05230-5

Navigation