Skip to main content
Log in

Investigation on effects of precursor pre-heat treatments on CIGS formation using spin-coated CIG precursor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A low cost, non-vacuum process involving spin coating of metallic precursors followed by selenization was substantiated for the fabrication of CIGS (CuInxGa(1−x)Se2) thin film absorber. Spin coating of CIG precursors using environmentally benign solvents and studying the effects of various heat treatments on the spin-coated CIG precursor film leads to high-quality crystalline CIGS thin films with minimum carbon impurities. In this work, effects of various heat treatments of CIG precursor (heat treatment of precursor films after each individual run of spin coating using hot plate, using air dryer, without any pre-heat treatment and heating of 30-run coated sample on hot plate for 30 mins) followed by selenization has been investigated and being reported. The as-prepared CIGS thin film samples are characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), Field emission scanning electron microscopy (FESEM), UV-Vis-IR spectroscopy and X-ray photo electron spectroscopy. From XRD pattern and Raman spectra, MoSe2 phase is also observed along with tetragonal chalcopyrite CIGS phase. Through FESEM and EDS, it is observed that heating each individual run has resulted a high-quality compact dense film with minimum carbon composition. XPS also confirms the minimum carbon composition in case of preheating individual run. From UV-Vis spectra, the bandgap of the prepared CIGS material is found to be 1.5 eV, essential for the cell fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovoltaics 9, 1863 (2019)

    Article  Google Scholar 

  2. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi - Rapid Res. Lett. 10, 583 (2016)

    Article  CAS  Google Scholar 

  3. E. Lee, S.J. Park, J.W. Cho, J. Gwak, M.-K. Oh, B.K. Min, Sol. Energy Mater. Sol. Cells 95, 2928 (2011)

    Article  CAS  Google Scholar 

  4. C. Broussillou, C. Viscogliosi, A. Rogee, S. Angle, P.P. Grand, S. Bodnar, C. Debauche, J.L. Allary, B. Bertrand, C. Guillou, L. Parissi, S. Coletti, IEEE 42nd Photovolt. Spec. Conf. 1 (2015)

  5. T. Zhang, Y. Yang, D. Liu, S.C. Tse, W. Cao, Z. Feng, S. Chen, L. Qian, Energy Environ. Sci. 9, 3674 (2016)

    Article  CAS  Google Scholar 

  6. S.M. McLeod, C.J. Hages, N.J. Carter, R. Agrawal, Prog. Photovoltaics Res. Appl. 23, 1550 (2015)

    Article  CAS  Google Scholar 

  7. A.C. Badgujar, K. Madhuri, S. Garner, S.R. Dhage, S.V. Joshi, in 2015 IEEE 42nd Photovolt. Spec. Conf. 1 (2015)

  8. X. Lin, R. Klenk, L. Wang, T. Köhler, J. Albert, S. Fiechter, A. Ennaoui, M.C. Lux-Steiner, Energy Environ. Sci. 9, 2037 (2016)

    Article  CAS  Google Scholar 

  9. B.S. Yadav, S.R. Dey, S.R. Dhage, Sol. Energy 179, 363 (2019)

    Article  CAS  Google Scholar 

  10. S.H. Lee, B.M. Park, K.H. Kim, Y.C. Chang, J. Pyee, H.J. Chang, J. Microelectron. Packag. Soc. 23, 57 (2016)

    Article  Google Scholar 

  11. A.C. Badgujar, R.O. Dusane, S.R. Dhage, Sol. Energy 199, 47 (2020)

    Article  CAS  Google Scholar 

  12. T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T.P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 25, 645 (2017)

    Article  Google Scholar 

  13. J. Ramanujam, U.P. Singh, Energy Environ. Sci. 10, 1306 (2017)

    Article  CAS  Google Scholar 

  14. C.J. Hibberd, E. Chassaing, W. Liu, D.B. Mitzi, D. Lincot, A.N. Tiwari, Prog. Photovoltaics Res. Appl. 18, 434 (2010)

    Article  CAS  Google Scholar 

  15. D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, L. Gignac, A.G. Schrott, Thin Solid Films 517, 2158 (2009)

    Article  CAS  Google Scholar 

  16. S. Jeong, B.-S. Lee, S. Ahn, K. Yoon, Y.-H. Seo, Y. Choi, B.-H. Ryu, Energy Environ. Sci. 5, 7539 (2012)

    Article  CAS  Google Scholar 

  17. G.S. Park, V. Ben Chu, B.W. Kim, D.-W. Kim, H.-S. Oh, Y.J. Hwang, B.K. Min, ACS Appl. Mater. Interfaces 10, 9894 (2018)

    Article  CAS  Google Scholar 

  18. S. Rehan, K.Y. Kim, J. Han, Y.-J. Eo, J. Gwak, S.K. Ahn, J.H. Yun, K. Yoon, A. Cho, S. Ahn, ACS Appl. Mater. Interfaces 8, 5261 (2016)

    Article  CAS  Google Scholar 

  19. B.S. Yadav, A.C. Badgujar, S.R. Dhage, Sol. Energy 157, 507 (2017)

    Article  CAS  Google Scholar 

  20. A.C. Badgujar, S.R. Dhage, S.V. Joshi, Thin Solid Films 589, 79 (2015)

    Article  CAS  Google Scholar 

  21. T.T.T. Le, N. Le, M.R. Pallavolu, Y. Jeon, D. Jeong, Babu Pejjai, Vasudeva Reddy Minnam Reddy, Nguyen Tam Nguyen Truong, and Chinho Park. Korean J. Chem. Eng. 36, 2110 (2019)

    Article  CAS  Google Scholar 

  22. G. Li, W. Liu, Y. Liu, S. Lin, X. Li, Y. Zhang, Zhiqiang Zhou, Qing He and Yun Sun. Journal of Semiconductor Science and Technology 30, 105012 (2015)

    Article  Google Scholar 

  23. M.-R. Ahmadian-Yazdi, C. Barratt, A. Rahimzadeh, M. Eslamian, ACS Omega 5, 808 (2020)

    Article  CAS  Google Scholar 

  24. S. Mandati, B.V. Sarada, S.R. Dey, S.V. Joshi, Mater. Lett. 118, 158 (2014)

    Article  CAS  Google Scholar 

  25. C. Jiang, J.-S. Lee, D.V. Talapin, J. Am. Chem. Soc. 134, 5010 (2012)

    Article  CAS  Google Scholar 

  26. K. Madhuri, P.K. Kannan, S. Chaudhari, S.R. Dhage, S.R. Dey, Mater. Today Proc. 21, 1882 (2020)

  27. P.U. Londhe, A.B. Rohom, R. Fernandes, D.C. Kothari, N.B. Chaure, ACS Sustain. Chem. Eng. 6, 4987 (2018)

    Article  CAS  Google Scholar 

  28. P. Arnou, C.S. Cooper, A.V. Malkov, J.W. Bowers, J.M. Walls, Thin Solid Films 582, 31 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhash Ranjan Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri, K., Kannan, P.K., Yadav, B.S. et al. Investigation on effects of precursor pre-heat treatments on CIGS formation using spin-coated CIG precursor. J Mater Sci: Mater Electron 32, 1521–1527 (2021). https://doi.org/10.1007/s10854-020-04921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04921-3

Navigation