Skip to main content

Advertisement

Log in

Temperature dependence of interface state density distribution determined from conductance–frequency measurements in Ni/n-GaP/Al diode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The conductance measurements of the non-annealed (D1) and 400 °C annealed (D2) Ni/n-GaP/Al diodes were made over a wide frequency range of (10 kHz to 5 MHz) and temperature of (100–320 K with steps of 20 K) with bias voltage as a parameter. The capacitance and conductance measurement method is one of the most popular non-destructive methods to obtain information about metal–semiconductor (MS) diode interfaces. The interface state density distribution curves were determined over the band-gap energy near the semiconductor energy midgap. The interface state density (Dit) has been seen to be of the order of ∼1012 eV−1 cm−2. The DitT curves have been plotted for different values of bias voltage. The value of Dit increased with increasing measurement temperature, and with increasing voltage from negative bias to positive bias voltage for both diodes. It was seen that the Dit value for D2 diode was greater than that for the D1 diode at each measurement temperature and bias voltage. It was seen in the interface state energy distribution or density distribution curves that the value of Dit has increased from the valence band maximum (Ev) towards conduction band minimum (Ec) at each measurement temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.E. Zipperian, R.J. Chaffin, R. Dawson, Recent advances in gallium phosphide junction devices for high-temperature electronic applications. High-Temp. Electron. (1998). https://doi.org/10.1109/9780470544884.ch55

    Article  Google Scholar 

  2. M.M. Sobolev, V.G. Nikitin, High-temperature diode formed by epitaxial GaP layers. Tech. Phys. Lett. 24, 329–331 (1998). https://doi.org/10.1134/1.1262110

    Article  CAS  Google Scholar 

  3. H. Saghrouni, S. Jomni, W. Belgacem, N. Hamdaoui, L. Beji, Physical and electrical characteristics of metal/Dy2O3/p-GaAs structure. Phys. B 444, 58–64 (2014). https://doi.org/10.1016/j.physb.2014.03.030

    Article  CAS  Google Scholar 

  4. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Influence of metal work function and incorporation of Sr atom on WO3 thin films for MIS and MIM structured SBDs. Superlattices Microstruct. 119, 134–149 (2018). https://doi.org/10.1016/j.spmi.2018.04.049

    Article  CAS  Google Scholar 

  5. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes. J. Mater. Sci. 29, 2618–2627 (2018). https://doi.org/10.1007/s10854-017-8187-5

    Article  CAS  Google Scholar 

  6. N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Temperature dependent dielectric studies of Ni/n-GaP Schottky diodes by capacitance and conductance measurements. Mater. Sci. Semicond. Process. 42, 378–382 (2016). https://doi.org/10.1016/j.mssp.2015.11.010

    Article  CAS  Google Scholar 

  7. N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Microelectronics reliability the role of electronic energy loss in SHI irradiated Ni/oxide/n-GaP Schottky diode. Microelectron. Reliab. 69, 40–46 (2017). https://doi.org/10.1016/j.microrel.2016.12.005

    Article  CAS  Google Scholar 

  8. N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Interface and transport properties of gamma irradiated Au/n-GaP Schottky diode. Mater. Sci. Semicond. Process. 74, 1–6 (2018). https://doi.org/10.1016/j.mssp.2017.10.008

    Article  CAS  Google Scholar 

  9. S.S. Fouad, G.B. Sakr, I.S. Yahia, D.M. Abdel-Basset, F. Yakuphanoglu, Impedance spectroscopy of p-ZnGa2Te4/n-Si nano-HJD. Phys. B 415, 82–91 (2013). https://doi.org/10.1016/j.physb.2013.01.014

    Article  CAS  Google Scholar 

  10. Z. Çaldiran, A.R. Deniz, F. Mehmet Coşkun, Ş Aydoǧan, A. Yeşildaǧ, D. Ekinci, I-V-T (current-voltage-temperature) characteristics of the Au/Anthraquinone/p-Si/Al junction device. J. Alloy. Compd. 584, 652–657 (2014). https://doi.org/10.1016/j.jallcom.2013.09.006

    Article  CAS  Google Scholar 

  11. P. Harishsenthil, J. Chandrasekaran, R. Marnadu, P. Balraju, C. Mahendarn, Influence of high dielectric HfO2 thin films on the electrical properties of Al/HfO2/n-Si (MIS) structured Schottky barrier diodes. Phys. B 594, 412336 (2020)

    Article  CAS  Google Scholar 

  12. H.G. Çetinkaya, M. Yıldırım, P. Durmuş, S. Altındal, Diode-to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures. J. Alloy. Compd. 728, 896–901 (2017). https://doi.org/10.1016/j.jallcom.2017.09.030

    Article  CAS  Google Scholar 

  13. Z. Ouennoughi, A. Sellai, MIS tunnel admittance with an inhomogeneous dielectric. Int. J. Electron. 83, 571–580 (1997). https://doi.org/10.1080/002072197135148

    Article  CAS  Google Scholar 

  14. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, Incorporation of Ba2+ ions on the properties of MoO3 thin films and fabrication of positive photo-response Cu/Ba–MoO3/p-Si structured diodes. Superlattices Microstruct. 133, 106197 (2019). https://doi.org/10.1016/j.spmi.2019.106197

    Article  CAS  Google Scholar 

  15. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application. Appl. Surf. Sci. 480, 308–322 (2019). https://doi.org/10.1016/j.apsusc.2019.02.214

    Article  CAS  Google Scholar 

  16. S. Alptekin, Ş Altındal, A comparative study on current/capacitance: voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. J. Mater. Sci. 30, 6491–6499 (2019). https://doi.org/10.1007/s10854-019-00954-5

    Article  CAS  Google Scholar 

  17. A. Buyukbas-Uluşan, S.A. Yerişkin, A. Tataroğlu, M. Balbaşı, Y.A. Kalandaragh, Electrical and impedance properties of MPS structure based on (Cu2O–CuO–PVA) interfacial layer. J. Mater. Sci. 29, 8234–8243 (2018). https://doi.org/10.1007/s10854-018-8830-9

    Article  CAS  Google Scholar 

  18. A. Sellai, Z. Ouennoughi, Analysis of frequency- and temperature-dependent interface states in PtSi/p-Si Schottky diodes. Mater. Sci. Eng. B 154–155, 179–182 (2008). https://doi.org/10.1016/j.mseb.2008.09.048

    Article  CAS  Google Scholar 

  19. H. Dogan, Y. Nezir, İ Orak, S. Elagöz, A. Turut, Capacitance-conductance-frequency characteristics of Au/Ni/n-GaN/undoped GaN structures. Phys. B 457, 48–53 (2015). https://doi.org/10.1016/j.physb.2014.09.033

    Article  CAS  Google Scholar 

  20. E. Arslan, S. Bütün, Y. Şafak, H. Çakmak, H. Yu, E. Özbay, Current transport mechanisms and trap state investigations in (Ni/Au)-AlN/GaN Schottky barrier diodes. Microelectron. Reliab. 51, 576–580 (2011). https://doi.org/10.1016/j.microrel.2010.09.017

    Article  CAS  Google Scholar 

  21. A. Turut, H. Doğan, N. Yıldırım, The interface state density characterization by temperature-dependent capacitance–conductance–frequency measurements in Au/Ni/n-GaN structures. Mater. Res. 2, 096304 (2015). https://doi.org/10.1088/2053-1591/2/9/096304

    Article  CAS  Google Scholar 

  22. A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36, 3212–3220 (1965). https://doi.org/10.1063/1.1702952

    Article  CAS  Google Scholar 

  23. P. Kordoš, R. Stoklas, D. Gregušová, Š Gaži, J. Novák, Trapping effects in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor investigated by temperature dependent conductance measurements. Appl. Phys. Lett. 96, 2010–2013 (2010). https://doi.org/10.1063/1.3275754

    Article  CAS  Google Scholar 

  24. A. Cherif, S. Jomni, W. Belgacem, R. Hannachi, N. Mliki, L. Beji, Investigation of structural properties, electrical and dielectrical characteristics of Al/Dy2O3/porous Si heterostructure. Superlattices Microstruct. 68, 76–89 (2014). https://doi.org/10.1016/j.spmi.2014.01.010

    Article  CAS  Google Scholar 

  25. Z. Chen, D.G. Park, F. Stengal, S.N. Mohammad, H. Morkoç, Metal-insulator-semiconductor structures on p-type GaAs with low interface state density. Appl. Phys. Lett. 69, 230–232 (1996). https://doi.org/10.1063/1.117933

    Article  CAS  Google Scholar 

  26. D.G. Park, D.M. Diatezua, Z. Chen, S.N. Mohammad, H. Morkoç, Characteristics of Si3N4/Si/n-GaAs metal-insulator-semiconductor interfaces grown on GaAs(111)B substrate. Appl. Phys. Lett. 69, 3025–3027 (1996). https://doi.org/10.1063/1.116827

    Article  CAS  Google Scholar 

  27. R. Padma, K. Sreenu, V. Rajagopal Reddy, Electrical and frequency dependence characteristics of Ti/polyethylene oxide (PEO)/p-type InP organic-inorganic Schottky junction. J. Alloys Compd. 695, 2587–2596 (2017). https://doi.org/10.1016/j.jallcom.2016.11.165

    Article  CAS  Google Scholar 

  28. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, P. Vivek, V. Balasubramani, P. Balraju, Jet nebulizer sprayed WO3-nanoplate arrays for high-photoresponsivity based metal–insulator–semiconductor structured Schottky barrier diodes. J. Inorg. Organomet. Polym Mater. 30, 731–748 (2020). https://doi.org/10.1007/s10904-019-01285-y

    Article  CAS  Google Scholar 

  29. K. Ejderha, I. Orak, S. Duman, A. Turut, The effect of thermal annealing and measurement temperature on interface state density distribution and time constant in Ni/n-GaP rectifying contacts. J. Electron. Mater. 47, 3502–3509 (2018). https://doi.org/10.1007/s11664-018-6192-y

    Article  CAS  Google Scholar 

  30. E.H. Nicollian, A. Goetzberger, The Si-SiO, interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46(6), 1055–1033 (1967). https://doi.org/10.1002/j.1538-7305.1967.tb01727.x

    Article  CAS  Google Scholar 

  31. V. Kumar, N. Kaminski, A.S. Maan, J. Akhtar, Capacitance roll-off and frequency-dispersion capacitance-conductance phenomena in field plate and guard ring edge-terminated Ni/SiO2/4H-nSiC Schottky barrier diodes. Phys. Status Solidi A 213, 193–202 (2016). https://doi.org/10.1002/pssa.201532454

    Article  CAS  Google Scholar 

  32. S. Kar, S. Varma, Determination of silicon-silicon dioxide interface state properties from admittance measurements under illumination. J. Appl. Phys. 58, 4256–4266 (1985). https://doi.org/10.1063/1.335561

    Article  CAS  Google Scholar 

  33. M. Kuhn, A quasi-static technique for MOS C-V and surface state measurements. Solid State Electron. 13, 873–885 (1970). https://doi.org/10.1016/0038-1101(70)90073-0

    Article  Google Scholar 

  34. K.K. Hung, Y.C. Cheng, Characterization of Si-SiO2 interface traps in p-metal-oxide-semiconductor structures with thin oxides by conductance technique. J. Appl. Phys. 62, 4204–4211 (1987). https://doi.org/10.1063/1.339091

    Article  CAS  Google Scholar 

  35. S.S. Fouad, G.B. Sakr, I.S. Yahia, D.M. Abdel-Basset, F. Yakuphanoglu, Capacitance and conductance characterization of nano-ZnGa 2Te4/n-Si diode. Mater. Res. Bull. 49, 369–383 (2014). https://doi.org/10.1016/j.materresbull.2013.08.065

    Article  CAS  Google Scholar 

  36. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D 4, 1589–1601 (1971)

    Article  CAS  Google Scholar 

  37. M. Missous, E.H. Rhoderick, D.A. Woolf, S.P. Wilkes, On the Richardson constant of intimate metal-GaAs Schottky barriers. Semicond. Sci. Technol. 7, 218–221 (1992). https://doi.org/10.1088/0268-1242/7/2/007

    Article  CAS  Google Scholar 

  38. M. Missous, E.H. Rhoderick, K.E. Singer, Thermal stability of epitaxial Al/GaAs Schottky barriers prepared by molecular-beam epitaxy. J. Appl. Phys. 59, 3189–3195 (1986). https://doi.org/10.1063/1.336900

    Article  CAS  Google Scholar 

  39. L. Dasaradha Rao, V. Rajagopal Reddy, V. Janardhanam, M.S. Kang, B.C. Son, C.J. Choi, Electrical and structural properties of rapidly annealed rare-earth metal Er Schottky contacts on p-type InP. Superlattices Microstruct. 65, 206–218 (2014). https://doi.org/10.1016/j.spmi.2013.10.043

    Article  CAS  Google Scholar 

  40. M. Çakar, N. Yildirim, Ş Karataş, C. Temirci, A. Türüt, Current-voltage and capacitance-voltage characteristics of Sn/rhodamine- 101n-Si and Sn/rhodamine- 101p-Si Schottky barrier diodes. J. Appl. Phys. 100, 7–12 (2006). https://doi.org/10.1063/1.2355547

    Article  CAS  Google Scholar 

  41. A. Türüt, On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turk. J. Phys. 44, 302–347 (2020). https://doi.org/10.3906/fiz-2007-11

    Article  Google Scholar 

  42. P. Horley, Y.V. Vorobiev, V.P. Makhniy, V.M. Sklyarchuk, Optoelectronic properties of Ni–GaP diodes with a modified surface. Phys. E 83, 227–231 (2016)

    Article  CAS  Google Scholar 

  43. D. McIntosh, Q. Zhou, Y. Chen, J.C. Campbell, High quantum efficiency GaP avalanche photodiodes. Opt. Express 19, 19607 (2011). https://doi.org/10.1364/oe.19.019607

    Article  CAS  Google Scholar 

  44. T.F. Lei, C.L. Lee, C.Y. Chang, Metal/n-Gap Schottky barrier heights. Solid State Electron. 22, 1035–1037 (1979). https://doi.org/10.1016/0038-1101(79)90007-8

  45. A. Kocyigit, M. Yıldırım, A. Sarılmaz, F. Ozel, The Au/Cu2WSe4/p–Si photodiode: electrical and morphological characterization. J. Alloys Compd. 780, 186–192 (2019). https://doi.org/10.1016/j.jallcom.2018.11.372

  46. D.E. Yildiz, Ş Altindal, H. Kanbur, Gaussian distribution of inhomogeneous barrier height in Al/SiO2/p-Si Schottky diodes. J. Appl. Phys. 103, 08 (2008). https://doi.org/10.1063/1.2936963

    Article  CAS  Google Scholar 

  47. O. Kahveci, A. Akkaya, E. Ayyildiz, A. Türüt, Comparison of the Ti/n-GaAs Schottky contacts’ parameters fabricated using Dc magnetron sputtering and thermal evaporation. Surf. Rev. Lett. 24, 1–9 (2017). https://doi.org/10.1142/S0218625X17500470

    Article  CAS  Google Scholar 

  48. M.E. Aydín, K. Akkílíç, T. Kilicoglu, The importance of the neutral region resistance for the calculation of the interface state in Pb/p-Si Schottky contacts. Phys. B 352, 312–317 (2004). https://doi.org/10.1016/j.physb.2004.08.003

    Article  CAS  Google Scholar 

  49. M. Raj, C. Joseph, M. Subramanian, V. Perumalsamy, V. Elayappan, Superior photoresponse MIS Schottky barrier diodes with nanoporous:Sn-WO3 films for ultraviolet photodetector application. New J. Chem. 44, 7708–7718 (2020). https://doi.org/10.1039/d0nj00101e

    Article  CAS  Google Scholar 

  50. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D 4, 1589–1601 (1971). https://doi.org/10.1088/0022-3727/4/10/319

    Article  CAS  Google Scholar 

  51. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986). https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  52. M.S.P. Reddy, P. Puneetha, V.R. Reddy, J. Lee, S. Jeong, C. Park, Temperature-dependent electrical properties and carrier transport mechanisms of TMAH-treated Ni/Au/Al2O3/GaN MIS diode. J. Electron. Mater. 45, 5655–5662 (2016). https://doi.org/10.1007/s11664-016-4809-6

    Article  CAS  Google Scholar 

  53. M. Nathan, Z. Shoshani, G. Ashkinazi, B. Meyler, O. Zolotarevski, On the temperature dependence of the barrier height and the ideality factor in high voltage Ni/nGaAs Schottky diodes. Solid-State Electron. 39(10), 1457–1462 (1996). https://doi.org/10.1016/0038-1101(96)00060-3

    Article  CAS  Google Scholar 

  54. R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R 35, 1–138 (2001). https://doi.org/10.1016/S0927-796X(01)00037-7

    Article  Google Scholar 

  55. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979). https://doi.org/10.1063/1.325607

    Article  CAS  Google Scholar 

  56. K. Sato, Y. Yasumura, Study of forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 58, 3655–3657 (1985). https://doi.org/10.1063/1.335750

    Article  Google Scholar 

  57. S. Alptekin, S.O. Tan, S. Altindal, Determination of surface states energy density distributions and relaxation times for a metal-polymer-semiconductor structure. IEEE Trans. Nanotechnol. 18, 1196–1199 (2019). https://doi.org/10.1109/TNANO.2019.2952081

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Duman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duman, S., Ejderha, K., Orak, I. et al. Temperature dependence of interface state density distribution determined from conductance–frequency measurements in Ni/n-GaP/Al diode. J Mater Sci: Mater Electron 31, 21260–21271 (2020). https://doi.org/10.1007/s10854-020-04638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04638-3

Navigation