Skip to main content
Log in

One-pot synthesis of tungsten oxide nanostructured for enhanced photocatalytic organic dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, WO3 nanorods have been prepared by simple hydrothermal method with the assistance of Na2SO4 as a structure-directing agent (SDA). The impact of SDA concentrations on the structural, morphological, optical, and photocatalytic performance of WO3 nanoparticles has been investigated. From XRD pattern, the phase transformation (monoclinic to hexagonal) was observed after adding SDA into WO3 matrix. Randomly oriented hexagonal WO3 nanorods were developed by the influence of SDA, which has been observed with FE-SEM analysis. The chemical composition and electronic structure of hexagonal WO3 nanorods photocatalyst were confirmed by X-ray photoelectron spectroscopy. The blue shift absorbance was recorded in UV–Vis spectrum. In the PL spectrum, the surface oxygen vacancy or defects were obtained at a wavelength of 520 and 552 nm. Also, the influence of defects in the WO3 nanorods facilitates to improve the photocatalytic dye degradation performance. The hexagonal WO3 nanorods prepared at 0.05 m of SDA exhibit maximum degradation efficiency of 86% under visible light exposure. Furthermore, the specific catalyst showed an excellent stability and reusability up to four consecutive cycles of photocatalytic dye degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Gao, J. Zhang, W. Li, S. Jiao, Y. Nie, H. Fan, Z. Zeng, Q. Yu, J. Wang, X. Zhang, Chem. Phys. Lett. 692, 14 (2018)

    CAS  Google Scholar 

  2. S. Natarajan, H.C. Bajaj, R.J. Tayade, J. Environ. Sci. 65, 201 (2017)

    Google Scholar 

  3. L. Nadjia, E. Abdelkader, B. Naceur, B. Ahmed, J. Rare Earths 36, 575 (2018)

    CAS  Google Scholar 

  4. D. Fang, X. Li, H. Liu, W. Xu, M. Jiang, W. Li, X. Fan, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  5. J. Singh, H. Kaur, M. Rawat, J. Mater. Sci.: Mater. Electron. 29, 13715 (2018)

    CAS  Google Scholar 

  6. S. Gnanam, V. Rajendran, J. Alloys Compd. 735, 1854 (2018)

    CAS  Google Scholar 

  7. B. Ahmed, S. Kumar, A.K. Ojha, P. Donfack, A. Materny, SpectroChem. Acta Part A: Mol. Biomol. Spectrosc. 175, 250 (2017)

    CAS  Google Scholar 

  8. M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A.Z. Moshfegh, Res. Chem. Intermed. 45, 2197 (2019)

    CAS  Google Scholar 

  9. P. Nandi, D. Das, Appl. Surf. Sci. 465, 546 (2018)

    Google Scholar 

  10. S.V. Mohite, V.V. Ganbavle, K.Y. Rajpure, J. Energy Chem. 26, 440 (2017)

    Google Scholar 

  11. F. Lu, J. Wang, Z. Chang, J. Zeng, J. Wang, Z. Chang, Mater. Design 181, 108069 (2019)

    CAS  Google Scholar 

  12. A.M. Alansi, M. Al-Qunaibit, I.O. Alade, T.F. Qahtan, T.A. Saleh, J. Mol. Liq. 253, 297 (2018)

    CAS  Google Scholar 

  13. M.B. Tahir, G. Nabi, N.R. Khalid, M. Rafique, Ceram. Int. 44, 5705 (2018)

    CAS  Google Scholar 

  14. R.M. Fernández-Domene, R. Sánchez-Tovar, B. Lucas-Granados, C.S. García-Zamora, J. García-Antón, J. Photochem. Photobiol. A 356, 46 (2018)

    Google Scholar 

  15. Q. Liu, F. Wang, H. Lin, Y. Xie, N. Tong, J. Lin, X. Zhang, Z. Zhang, X. Wang, Catal. Sci. Technol. 8, 4399 (2018)

    CAS  Google Scholar 

  16. K. Song, F. Gao, W. Yang, E. Wang, Z. Wang, H. Hou, ChemElectroChem 5, 322 (2018)

    CAS  Google Scholar 

  17. J. Ding, Y. Chai, Q. Liu, X. Liu, J. Ren, W.L. Dai, J. Phys. Chem. C 120, 4345 (2016)

    CAS  Google Scholar 

  18. M. Parthibavarman, M. Karthik, S. Prabhakaran, Vacuum 155, 224 (2018)

    CAS  Google Scholar 

  19. Y. Zhang, D. Zhang, X. Xu, B. Zhang, Chin. Chem. Lett. 29, 1350 (2018)

    CAS  Google Scholar 

  20. M. Feng, Y. Liu, Z. Zhao, H. Huang, Z. Peng, Mater. Res. Bull. 109, 168 (2019)

    CAS  Google Scholar 

  21. M. Gao, L. You, L. Guo, T. Li, J. Photochem. Photobiol. A 374, 206 (2019)

    CAS  Google Scholar 

  22. Y. Lu, G. Liu, J. Zhang, Z. Feng, C. Li, Z. Li, Chin. J. Catal. 37, 349 (2016)

    CAS  Google Scholar 

  23. S. Yao, F. Qu, G. Wang, X. Wu, J. Alloys Compd. 724, 695 (2017)

    CAS  Google Scholar 

  24. Z. Liu, B. Liu, W. Xie, H. Li, R. Zhou, Q. Li, T. Wang, Sens. Actuators B 235, 614 (2016)

    CAS  Google Scholar 

  25. X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys. 14, 7894–7911 (2012)

    CAS  Google Scholar 

  26. Y. Yan, Y. Wu, Y. Yan, W. Guan, W. Shi, J. Phys. Chem. 117, 20017 (2013)

    CAS  Google Scholar 

  27. H. Zhang, J. Yang, D. Li, W. Guo, Q. Qin, L. Zhu, W. Zheng, Appl. Surf. Sci. 305, 274 (2014)

    CAS  Google Scholar 

  28. V.S. Manikandan, A.K. Palai, S. Mohanty, S.K. Nayak, Ceram. Int. 44, 21314 (2018)

    CAS  Google Scholar 

  29. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, Superlattices Microstruct. 133, 106197 (2019)

    CAS  Google Scholar 

  30. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Appl. Surf. Sci. 480, 308 (2019)

    CAS  Google Scholar 

  31. P.A. Shinde, A.C. Lokhande, A.M. Patil, C.D. Lokhande, J. Alloys Compd. 770, 1130 (2019)

    CAS  Google Scholar 

  32. T.W. Elkins, H.E. Hagelin-Weaver, Appl. Catal. A 497, 96 (2015)

    CAS  Google Scholar 

  33. T. Peng, D. Ke, J. Xiao, L. Wang, J. Hu, L. Zan, J. Solid State Chem. 194, 250 (2012)

    CAS  Google Scholar 

  34. Y. Yu, W. Zeng, M. Xu, X. Peng, E. Physica, Low-Dimens. Syst. Nanostruct. 79, 127 (2016)

    CAS  Google Scholar 

  35. W. Xiao, W. Liu, X. Mao, H. Zhu, D. Wang, J. Mater. Chem. A 1, 1261 (2013)

    CAS  Google Scholar 

  36. Y. Lu, J. Zhang, F. Wang, X. Chen, Z. Feng, C. Li, ACS Appl. Energy Mater. 5, 2067 (2018)

    Google Scholar 

  37. J.H. Ha, P. Muralidharan, D.K. Kim, J. Alloys Compd. 475, 446 (2009)

    CAS  Google Scholar 

  38. S.L. Liew, Z. Zhang, T.W.G. Goh, G.S. Subramanian, H.L.D. Seng, T.S.A. Hor, H.K. Luo, D.Z. Chi, Int. J. Hydrog. Energy 39, 4291 (2014)

    CAS  Google Scholar 

  39. S. Adhikari, K. Sarath Chandra, D.H. Kim, G. Madras, D. Sarkar, Adv. Powder Technol. 29, 1591 (2018)

    CAS  Google Scholar 

  40. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, R. Liu, Sci. Rep. 4, 4596 (2015)

    Google Scholar 

  41. A. Umar, R. Kumar, G. Kumar, H. Algarni, S.H. Kim, J. Alloys Compd. 648, 46 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mahendran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindaraj, T., Mahendran, C., Manikandan, V.S. et al. One-pot synthesis of tungsten oxide nanostructured for enhanced photocatalytic organic dye degradation. J Mater Sci: Mater Electron 31, 17535–17549 (2020). https://doi.org/10.1007/s10854-020-04309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04309-3

Navigation