Skip to main content
Log in

Investigation of effects on dielectric properties of different doping concentrations of Au/Gr-PVA/p-Si structures at 0.1 and 1 MHz at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to improve and detailedly investigate the dielectric properties of polymer interfaces of Metal–Polymer–Semiconductor (MPS) structures, three types of MPS were fabricated by doping 1, 3 and 5% graphene (Gr) into the polyvinyl alcohol (PVA) interface material. Capacitance–Voltage (C-V) and Conductance–Voltage (G/ω-V) measurements were used to analyze the dielectric properties of three types of MPS. Using C-V and G/ω-V data, series resistance (Rs) affecting device performance and interface properties besides basic dielectric parameters of each structure such as both the real and imaginary components of complex dielectric constant (ε' and ε''), complex electrical modulus (M' and M''), loss tangent (tanδ), and ac electrical conductivity (σac) were also calculated. The effect of graphene doping was examined for each parameter and obtained results were compared at both low (0.1 MHz) and high (1 MHz) frequencies. It was observed that ε and ε'' decreased with increasing graphene doping at both 0.1 and 1 MHz, while M' and M'' increased under same conditions. Moreover, both the M' and M'' vs V plots have two distinctive peaks between −2.0 V and 0.0 V due to a special density distribution of surface states between (Gr-PVA) and p-Si. The tanδ gradually increased with increasing graphene doping at only 0.1 MHz. As the doping ratio of graphene increases, the charge carriers in the structure generate more dipoles and create an earlier relaxation process. In other words, increasing the doping ratio helps to improve the series resistance effects in MPS structures. As a result, it was seen that the interfacial properties of MPS structures were improved by increasing the rate of graphene doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.S. Tombak, S. Ocak, T. Asubay, F. Kilicoglu, Özkahraman. Mater. Sci. Semicond. Proces. 24, 187 (2014)

    CAS  Google Scholar 

  2. İ. Yücedağ, G. Ersöz, A. Gümüş, Ş. Altındal, Int. J. Mod. Phys. B 29, 1550075 (2015)

    Google Scholar 

  3. A. Kaya, İ. Yücedağ, H. Tecimer, Ş. Altındal, Mater. Sci. Semicond. Proces. 28, 26–30 (2014)

    CAS  Google Scholar 

  4. G. Ersöz Demir, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, J. Electron. Mater. 47, 6600 (2018)

  5. S. Demirezen, Ş. Altındal, İ. Uslu, Curr. Appl. Phys. 13, 53 (2013)

    Google Scholar 

  6. H.H. Güllü, D.E. Yıldız, J. Mater. Sci.: Mater. Electron. 31, 8705 (2020)

    Google Scholar 

  7. H.H. Güllü, D.E. Yıldız, O. Surucu, M. Parlak, J. Mater. Sci.: Mater. Electron. 31, 9394 (2020)

    Google Scholar 

  8. HH Güllü, Ö. Bayraklı Sürücü, M. Terlemezoglu, D.E. Yıldız, M. Parlak (2019) J. Mater. Sci.: Mater. Electron. 30: 9814

  9. E.E. Tanrıkulu, D.E. Yıldız, A. Günen, Ş. Altındal, Phys. Scr. 90, 095801 (2015)

    Google Scholar 

  10. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Willey & Sons, New York, 1981), pp. 1–24

    Google Scholar 

  11. K.H. Tseng, C.S. Liao, J.G. Hwu, IEEE Trans. Nanotechnol. 16, 1011 (2017)

    CAS  Google Scholar 

  12. N. Karaoğlan, H.U. Tecimer, Ş. Altındal, C. Bindal, J. Mater. Sci.: Mater. Electron. 30, 14224 (2019)

    Google Scholar 

  13. R. Padmanabhan, O. Eyal, B. Meyler, S. Yofis, G. Atiya, W.D. Kaplan, V. Mikhelashvili, G. Eisenstein, IEEE Trans. Nanotechnol. 15, 492 (2016)

    CAS  Google Scholar 

  14. S. Altındal Yerişkin, M. Balbaşı, İ. Orak, J. Mater. Sci.: Mater. Electron. 28, 7819 (2017)

  15. Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal, App. Phys. A-Mater. 123, 560 (2017)

    Google Scholar 

  16. S. Demirezen, Appl. Phys. A-Mater. 112, 827 (2013)

    CAS  Google Scholar 

  17. U.A. Büyükbaş, S. Altındal Yerişkin, A. Tataroğlu, M. Balbasi, Y. Azizian-Kalandaragh, Optoelectron. Adv. Mat. 14, 256 (2020)

    Google Scholar 

  18. H.C. Chiu, S.C. Chen, J.W. Chiu, B.H. Li, H.Y. Wang, L.Y. Peng, H.C. Wang, K.P. Hsueh, Microelectron. Reliab. 83, 238 (2018)

    CAS  Google Scholar 

  19. Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, T. Xie, Electrochim. Acta. 129, 358 (2014)

    CAS  Google Scholar 

  20. H. Tecimer, J. Mater. Sci.: Mater. Electron. 29, 20141 (2018)

    CAS  Google Scholar 

  21. A. Karabulut, A. Türüt, Ş. Karataş, J. Mol. Struct. 1157, 513 (2018)

    CAS  Google Scholar 

  22. G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, I. Orak, Ş. Altındal, IEEE T. Electron Dev. 63, 2948 (2016)

    Google Scholar 

  23. E. Marıl, S.O. Tan, Ş. Altındal, İ. Uslu, IEEE T. Electron Dev. 65, 3901 (2018)

    Google Scholar 

  24. Ö. Sevgili, Y. Azizian-Kalandaragh, Ş. Altındal, Physica B-Condens. Matter. 587, 412122 (2020)

    CAS  Google Scholar 

  25. M.H. Al-Dharob, A. Kökce, D.A. Aldemir, A.F. Özdemir, Ş. Altındal, J. Phys. Chem. Solids 144, 109523 (2020)

    CAS  Google Scholar 

  26. H. Li, W. Jiao, O. Yanan, Z. Jianling, Y. Jian, W. Guosheng, Colloids Surf. A: Physiochem. Eng. Asp. 449, 148 (2014)

    CAS  Google Scholar 

  27. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Science 306, 666 (2004)

    CAS  Google Scholar 

  28. W. Dongrui, Z. Xiaoman, Z. Jun-Wei, Z. Jun, D. Zhi-Min, H. Guo-Hua, Polymer 54, 1916 (2013)

    Google Scholar 

  29. J.S. Lee, K.H. Choi, H.D. Ghim, S.S. Kim, D.H. Chun, H.Y. Kim, W.S. Lyoo, J. Appl. Polym. Sci. 93, 1638 (2004)

    CAS  Google Scholar 

  30. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    CAS  Google Scholar 

  31. G. Fan, H. Zhu, K. Wang, J. Wei, X. Li, Q. Shu, N. Guo, D. Wu, A.C.S. Appl, Mater. 3, 721 (2011)

    CAS  Google Scholar 

  32. K.H. Yu, J.H. Chen, Nanoscale Res. Lett. 4, 1 (2009)

    CAS  Google Scholar 

  33. M.H. Chakrabarti, C.T.J. Low, N.P. Brandon, V. Yufit, M.A. Hashim, M.F. Irfan, J. Akhtar, E. Ruiz-Trejo, M.A. Hussain, Electrochim. Acta. 107, 425 (2013)

    CAS  Google Scholar 

  34. E.H. Nicollian, J. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, New York, 1982)

    Google Scholar 

  35. İ. Yücedağ, Optoelectron. Adv. Mat. Rapid. Comm. 3, 612 (2009)

    Google Scholar 

  36. A. Gümüş, G. Ersöz, İ. Yücedağ, S. Bayrakdar, Ş. Altındal, J. Korean. Phys. Soc. 67, 889 (2015)

    Google Scholar 

  37. İ.M. Afandiyeva, M.M. Bülbül, Ş. Altındal, S. Bengi, Microelectron. Eng. 93, 50 (2012)

    CAS  Google Scholar 

  38. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  39. P.T. Oreshkin, Physics of Semiconductors and Dielectrics (Vysshaya Shkola, Moscow, 1977)

    Google Scholar 

  40. A.B. Ulusan, İ. Taşçıoğlu, A. Tataroğlu, F. Yakuphanoğlu, Ş. Altındal, J. Mater. Sci.: Mater. Electron. 30, 12122 (2019)

    Google Scholar 

  41. K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7, 112 (2012)

    Google Scholar 

  42. Ü. Akın, Ö.F. Yüksel, J. Mater. Sci.: Mater. Electron. 29, 15183 (2018)

    Google Scholar 

  43. İ.M. Afandiyeva, İ. Dökme, Ş. Altındal, M.M. Bülbül, A. Tataroğlu, Microelectron. Eng. 85, 247 (2008)

    CAS  Google Scholar 

  44. L. Ai, J. Jiang, L. Li, J. Mater. Sci.: Mater. Electron. 21, 206 (2010)

    CAS  Google Scholar 

  45. A.K. Roy, K. Prasad, A. Prasad, Process. Appl. Ceram. 7, 81 (2013)

    CAS  Google Scholar 

  46. S.P. Szu, C.Y. Lin, Mater. Chem. Phys. 82, 295 (2003)

    CAS  Google Scholar 

  47. M.D. Migahed M. Ishra, T. Fahmy, A. Barakat, J. Phys. Chem. Solids 65, 1121 (2004)

  48. F.A. Mater, K.M. Batoo, I. Chatterjee, G.M. Bha, J. Mater. Sci.: Mater. Electron. 25, 1564 (2014)

    Google Scholar 

  49. Y.S. Altındal, J. Mater. Sci.: Mater. Electron. 30, 17032 (2019)

    Google Scholar 

  50. A. Karabulut, Bull. Mater. Sci. 42, 5 (2019)

    Google Scholar 

  51. A. Karabulut, I. Orak, A. Türüt, Int. J. Chem. Technol. 2, 116 (2018)

    Google Scholar 

Download references

Acknowledgement

All authors would like to thank Gazi University Scientific Research Center for the supports and contributions (Project No: GU-BAP.05/2019-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülçin Ersöz Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersöz Demir, G., Yücedağ, İ. & Altındal, Ş. Investigation of effects on dielectric properties of different doping concentrations of Au/Gr-PVA/p-Si structures at 0.1 and 1 MHz at room temperature. J Mater Sci: Mater Electron 31, 16324–16331 (2020). https://doi.org/10.1007/s10854-020-04181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04181-1

Navigation