Skip to main content
Log in

Signal transfer via smart conductive networks for high temperature performing wearable electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High temperature performing textile conductive networks for wearable electronic applications are demonstrated. Different types of conductive yarns, namely steel, copper, and silver-coated were used as signal transmission tracks in order to configure the smart conductive network architecture. Conductive networks were formed between the layers of high temperature-resistant fabric substrates which of the following substrates most likely consist of reactively sputtered aluminum particles, polybenzimidazoles (PBI), aramid, and glass fibers. The specimens were constructed using welding and conventional sewing techniques and their operating characteristics in terms of high temperature resistance (limited flame spread, convective heat transfer, radiant heat) and electrical properties (conductivity and signal quality in data transfer) were determined. As a result of thermal tests, the excellent performances among conductive networks are attributed to steel and copper threads used as signal transmission line hidden in the interface among aluminum, 100 % aramid (nonwoven), and epoxy layer used as a substrate. The efficient exploitation of smart conductive networks will boost the viability of data transfer quality among wearable electronic components performing at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data of the research are available upon request.

References

  1. C. Wang, R. Guo, S. Lin, J. Lan, S. Jiang, C. Xiang, J. Mater. Sci. Mater. Electron. 29(17), 14927 (2018)

    Article  CAS  Google Scholar 

  2. M. Stoppa, A. Chiolerio, Sensors. (2014). https://doi.org/10.3390/s140711957

    Article  Google Scholar 

  3. W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, S.K. Chen, A. Peck, H.M. Fahad, A. Javey, Nature (2016). https://doi.org/10.1038/nature16521

    Article  Google Scholar 

  4. Y. Chen, Y. Gao, X. Jin et al., Effect of surface finishing on signal transmission loss of microstrip copper lines for high-speed PCB. J. Mater. Sci. 30, 16226–16233 (2019). https://doi.org/10.1007/s10854-019-01991-w

    Article  CAS  Google Scholar 

  5. M. Kaltenbrunner et al., Nature (2013). https://doi.org/10.1038/nature12314

    Article  Google Scholar 

  6. R. R. Bonaldi, in High-Performance Apparel, (Woodhead Publishing, 2018), p.245–284. https://doi.org/10.1016/B978-0-08-100904-8.00014-6

  7. S.J. Pomfret, P.N. Adams, N.P. Comfort, A.P. Monkman, Synth. Met. (1999). https://doi.org/10.1016/S0379-6779(98)01220-X

    Article  Google Scholar 

  8. C. Cochrane, V. Koncar, M. Lewandowski, C. Dufour, Sensors. 7(4), 473 (2007)

    Article  CAS  Google Scholar 

  9. B. Kim, V. Koncar, E. Devaux, C. Dufour, P. Viallier, Synth. Met (2004). https://doi.org/10.1016/j.synthmet.2004.06.023

    Article  Google Scholar 

  10. Z. Hua, Y. Liu, G. Yao, L. Wang, J. Ma, and L. Liang, J. Mater. Eng. Perform. (2012) https://doi.org/10.1007/s11665-011-9958-4

  11. O.TIkkala, J. Laakso, K. Väkipart, E.Virtanen, A.J. Heeger, Synth. Met., (1995). https://doi.org/10.1016/0379-6779(94)02376-A

  12. S. Kursun-Bahadir, V. Koncar, F. Kalaoğlu, I. Cristian, S. Thomassey, Fibres Text. East. Eur. 88(5), 75 (2011)

    Google Scholar 

  13. R.B. Katragadda, Y. Xu, Sens. Actuators A (2008). https://doi.org/10.1016/j.sna.2007.08.013

    Article  Google Scholar 

  14. S. Choi, Z. Jiang, Sens. Actuators A. (2006). https://doi.org/10.1016/j.sna.2006.02.012

    Article  Google Scholar 

  15. C.-S. Lin, H.C. Hsu, Y.-L. Lay, C.-C. Chiu, C.-S. Chao, Measurement (2007). https://doi.org/10.1016/j.measurement.2007.04.001

    Article  Google Scholar 

  16. E. Gasana, P. Westbroeka, J. Hakuzimanaa, K. Clercka, G. Priniotakis, D. Tseles, Surf. Coat Technol. (2006). https://doi.org/10.1016/j.surfcoat.2006.08.128

    Article  Google Scholar 

  17. D. Negru, C.T. Buda, D. Avram, Fibres Text. East. Eur. 90(1), 53 (2012)

    Google Scholar 

  18. S. Vassiliadis, Ed., Electronics and Computing in Textiles (2012). ISBN: 978–87–403–0282–0

  19. R. Paradiso, L. Caldani, M. Pacelli, in Wearable Sensors, ed. by E. Sazonov, M.R. Neuman (Academic Press, Oxford, 2014), p. 153

    Chapter  Google Scholar 

  20. M. Pacelli, G. Loriga, and R. Paradiso, Flat Knitted Sensors for Respiration Monitoring, in IEEE International Symposium on Industrial Electronics, (2007) 2838–2841. https://doi.org/1https://doi.org/10.1109/ISIE.2007.4375062

  21. T. Kuroda, H. Takahashi, A. Masuda, in Wearable Sensors, ed. by E. Sazonov, M.R. Neuman (Academic Press, Oxford, 2014), p. 175

    Chapter  Google Scholar 

  22. A. Masuda, T. Murakami, K. Kondo, T. Sasaji, Y. Iemoto, S. Tanoue, J. Text. Eng. (2010). https://doi.org/10.4188/jte.56.181

    Article  Google Scholar 

  23. Z. He, S. Bi, K. Asare-Yeboah et al., Phase segregation effect on TIPS pentacene crystallization and morphology for organic thin film transistors. J. Mater. Sci. 31, 4503–4510 (2019). https://doi.org/10.1007/s10854-020-02999-3

    Article  CAS  Google Scholar 

  24. Z. He, Z. Zhang, K. Asare-Yeboah, Poly(α-methylstyrene) polymer and small-molecule semiconductor blend with reduced crystal misorientation for organic thin film transistors. J. Mater. Sci: 30, 14335–14343 (2019). https://doi.org/10.1007/s10854-019-01803-1

    Article  CAS  Google Scholar 

  25. A. Soroudi, N. Hernández, J. Wipenmyr, V. Nierstrasz, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02047-9

    Article  Google Scholar 

  26. A. Kim, V. Koncar, Ensait-Gemtex, and C. Dufour, in Intelligent Textiles and Clothing, ed. By H. R. Mattila (Woodhead Publishing, 2006), p. 308 https://doi.org/10.1533/9781845690441.81

  27. S. Chang, J. Li, Y. He, H. Liu, B. Cheng, Sens. Actuators A. (2019). https://doi.org/10.1016/j.sna.2019.05.011

    Article  Google Scholar 

  28. M.A.U. Khalid, M. Ali, A.M. Soomro, B.G. Lee, K.H. Choi, Sens. Actuators A. (2019). https://doi.org/10.1016/j.sna.2019.05.021

    Article  Google Scholar 

  29. J. Liu, X. Liu, E. He, S. Xu, X. Cai, Sens. Actuators A. (2019). https://doi.org/10.1016/j.sna.2019.05.017

    Article  Google Scholar 

  30. M.L. Mapa, A. Fernandes Golin, C. Cavalcante Costa, R.F. Bianchi, Sens. Actuators A. (2019). https://doi.org/10.1016/j.sna.2019.02.001

    Article  Google Scholar 

  31. L.G. Tran, H.K. Cha, W.T.A. Park, Sens. Actuators A. (2019). https://doi.org/10.1016/j.sna.2018.11.029

    Article  Google Scholar 

  32. Y. Wang, S. Ali, J. Wijekoon, R.H. Gong, A. Fernando, Sens. Actuators A (2018). https://doi.org/10.1016/j.sna.2018.09.015

    Article  Google Scholar 

  33. M. Mohammed Ali, D. Maddipatla, B.B. Narakathu, B.J. Bazuin, M.Z. Atashbar, Sens. Actuators A (2018). https://doi.org/10.1016/j.sna.2018.03.003

    Article  Google Scholar 

  34. K.P. Gao, H.J. Yang, X.L. Wang, B. Yang, J.Q. Liu, Sens. Actuators A (2018). https://doi.org/10.1016/j.sna.2018.09.045

    Article  Google Scholar 

  35. B. Liu, H. Tang, Z. Luo, Q. Tu, X. Jin, Sens. Actuators A. (2017). https://doi.org/10.1016/j.sna.2017.08.036

    Article  Google Scholar 

  36. A. Ghazy, Fire Technol. (2019). https://doi.org/10.1007/s10694-018-0802-3

    Article  Google Scholar 

  37. R. Oliwa, M. Oleksy, J. Oliwa, S. Krauze, M. Kowalski, Polimery/Polym. (2019). https://doi.org/10.14314/polimery.2019.4.7

    Article  Google Scholar 

  38. I. Frydrych, A. Cichocka, P. Gilewicz, Fibres Text. East. Eur. 26(1), 126 (2018)

    Google Scholar 

  39. R. Hrynyk, I. Frydrych, E. Irzmańska, A. Stefko, Text Res. J. (2013). https://doi.org/10.1177/0040517512447517

    Article  Google Scholar 

  40. M. Ghane, H. Sarlak, Fibres Text. East. Eur. 24(4), 80 (2016)

    Article  CAS  Google Scholar 

  41. F. Yu, H. Chen, C. Hang et al., Fabrication of high-temperature-resistant bondline based on multilayer core–shell hybrid microspheres for power devices. J. Mater. Sci. 30, 3595–3603 (2019). https://doi.org/10.1007/s10854-018-00637-7

    Article  CAS  Google Scholar 

  42. Y. Huang, H. Peng, H. Zhang et al., A novel thermosetting composite with excellent high-frequency dielectric properties and ultra-high-temperature resistance. J. Mater. Sci.: Mater. Electron. 30, 21495–21502 (2019). https://doi.org/10.1007/s10854-019-02534-z

    Article  CAS  Google Scholar 

  43. W. Agbor, I. Mahbub and K. Namuduri, "Impact of High Temperature on Performance of Wearable Electro-Textile Antennas," 2019 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 2019, pp. 1-5, https://doi.org/10.1109/WMCaS.2019.8732499.

  44. J.G. Lee, J.H. Lee, S. An, D.Y. Kim, T.G. Kim, S.S. Al-Deyab, A.L. Yarin, S.S. Yoon, Highly flexible, stretchable, wearable, patternable and transparent heaters on complex 3D surfaces formed from supersonically sprayed silver nanowires†. J. Mater. Chem. A 5, 6677–6685 (2017)

    Article  CAS  Google Scholar 

  45. EN ISO 11612 Standard: Protective clothing -- Clothing to protect against heat and flame -- Minimum performance requirements (2015)

  46. S. Kim, S. Leonhardt , N. Zimmermann, P. Kranen, D. Kensche, E. Müller, C. Quix, Influence of contact pressure and moisture on the signal quality of a newly developed textile ECG sensor shirt. In: 5th International Workshop on Wearable and Implantable Body Sensor Networks. The Chinese University of Hong Kong, HKSAR, China. Jun 1–3, 2008. https://doi.org/10.1109/ISSMDBS.2008.4575068

  47. S. Kursun Bahadir, Fibres Text. East. Eur. 23(2), 55 (2015)

    Google Scholar 

Download references

Funding

This research work was supported by the Istanbul Technical University, BAP, grant number MYL2018-41093. Authors also would like to thank Kıvanç Group in Turkey for supplying materials and testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senem Kurşun Bahadır.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabulut, E., Kurşun Bahadır, S. Signal transfer via smart conductive networks for high temperature performing wearable electronics. J Mater Sci: Mater Electron 31, 15996–16007 (2020). https://doi.org/10.1007/s10854-020-04161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04161-5

Navigation