Skip to main content
Log in

A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to see an interlayer on the electrical parameters and conduction mechanisms (CMs), both the metal–semiconductor (MS) and Au/(MgO-PVP)/n-Si Schottky diodes (SDs) were grown onto the same wafer with   〈100〉 orientation and 350 μm thickness. Next, their electrical parameters, such as the ideality factor (n), barrier height (ΦB), and series resistances (Rs) were obtained from the current–voltage (I–V) measurements using thermionic emissions, theory, and Cheung and Norde functions and compared. The energy-dependent distribution of interface traps/states (Dit/Nss) of these two structures were extracted from the I–V data in the forward biases by considering the voltage-dependent n and ΦB. Experimental results confirmed that the Nss for a metal–polymer–semiconductor is considerably lower than for an MS, and it increases from the mid-gap towards the edge of the conduction band (Ec). The ln(I)–ln(V) curves have three straight lines which correspond to low, moderate, and high biases, and CM is governed by ohmic, trap/space-charge-limited current, respectively. When comparing these results, MgO-PVP leads to considerably improving the performance of the MS in respect of lower values of Nss, Rs, the reverse saturation current (Io) and higher values of the rectifying rate, ΦB, and the shunt resistance (Rsh), and hence it can be successfully used instead of a traditional insulator interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  2. E.H. Rhoderick, Metal-Semiconductor Contacts (Clarendon, Oxford, 1978)

    Google Scholar 

  3. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum, New York, 1984)

    Book  Google Scholar 

  4. S. Demirezen, S.A. Yerişkin, Polym. Bull. 77, 49 (2020)

    Article  CAS  Google Scholar 

  5. V. Janardhanam, A.A. Kumar, V.R. Reddy, P.N. Reddy, J. Alloys Compd. 485, 467 (2009)

    Article  CAS  Google Scholar 

  6. K. Ejderha, N. Yıldırım, B. Abay, A. Turut, J. Alloys Compd. 484, 870 (2009)

    Article  CAS  Google Scholar 

  7. C.R. Crowell, V.L. Rideout, Solid. State. Electron. 12, 89 (1969)

    Article  Google Scholar 

  8. A. Latreche, Z. Ouennoughi, A. Sellai, R. Weiss, H. Ryssel, Semicond. Sci. Technol. 26, 085003 (2011)

    Article  Google Scholar 

  9. V. Janardhanam, I. Jyothi, K.-S. Ahn, C.-J. Choi, Thin Solid Films 546, 63 (2013)

    Article  CAS  Google Scholar 

  10. B. KInacI, S. Ozçelik, J. Electron. Mater. 42, 1108 (2013)

    Article  CAS  Google Scholar 

  11. E.E. Said-Galiev, A.I. Stakhanov, I.V. Blagodatskikh, E.M. Kobitskaya, A.R. Khokhlov, A.V. Naumkin, I.O. Volkov, V.V. Volkov, E.V. Shtykova, K.A. Dembo, S.A. Pisarev, Polym. Sci. Ser. B 52, 165 (2010)

    Article  Google Scholar 

  12. M.S.P. Reddy, K. Sreenu, V.R. Reddy, C. Park, J. Mater. Sci. Mater. Electron. 28, 4847 (2017)

    Article  Google Scholar 

  13. E.E. Tanrıkulu, S. Demirezen, Ş. Altındal, İ. Uslu, J. Mater. Sci. Mater. Electron. 28, 8844 (2017)

    Article  Google Scholar 

  14. H.G. Çetinkaya, Ş. Altındal, I. Orak, I. Uslu, J. Mater. Sci. Mater. Electron. 28, 7905 (2017)

    Article  Google Scholar 

  15. L.-M. Huang, T.-C. Wen, A. Gopalan, Thin Solid Films 473, 300 (2005)

    Article  CAS  Google Scholar 

  16. S.-A. Chen, Y. Fang, H.-T. Lee, Synth. Met. 57, 4082 (1993)

    Article  CAS  Google Scholar 

  17. A.A. Al-Ghamdi, A. Dere, A. Tataroğlu, B. Arif, F. Yakuphanoglu, F. El-Tantawy, W.A. Farooq, J. Alloys Compd. 650, 692 (2015)

    Article  CAS  Google Scholar 

  18. A. Tataroğlu, A.G. Al-Sehemi, M. Ilhan, A.A. Al-Ghamdi, F. Yakuphanoglu, Silicon 10, 913 (2018)

    Article  Google Scholar 

  19. C.A. Amorim, E.P. Bernardo, E.R. Leite, A.J. Chiquito, Semicond. Sci. Technol. 33, 055003 (2018)

    Article  Google Scholar 

  20. C.V.S. Reddy, X. Han, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Microelectron. Eng. 83, 281 (2006)

    Article  Google Scholar 

  21. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, C. Sanjeeviraja, J. Non-Cryst. Solids 357, 3751 (2011)

    Article  CAS  Google Scholar 

  22. R.T. De Silva, M.M.M.G.P.G. Mantilaka, K.L. Goh, S.P. Ratnayake, G.A.J. Amaratunga, K.M.N. de Silva, Int. J. Biomater. 2017, 1 (2017)

    Article  Google Scholar 

  23. R. Halder, S. Bandyopadhyay, J. Alloys Compd. 693, 534 (2017)

    Article  CAS  Google Scholar 

  24. L. Chen, P. Bai, W. Li, Chem. Eng. J. 303, 588 (2016)

    Article  CAS  Google Scholar 

  25. M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, J. Mol. Liq. 225, 730 (2017)

    Article  CAS  Google Scholar 

  26. G. Mohammed, A.M. El Sayed, W.M. Morsi, J. Phys. Chem. Solids 115, 238 (2018)

    Article  CAS  Google Scholar 

  27. I.V. Mishakov, A.F. Bedilo, R.M. Richards, V.V. Chesnokov, A.M. Volodin, V.I. Zaikovskii, R.A. Buyanov, K.J. Klabunde, J. Catal. 206, 40 (2002)

    Article  CAS  Google Scholar 

  28. S. Fakhri-Mirzanagh, K. Ahadzadeh-Namin, G.P. Givi, J. Farazin, Y. Azizian-Kalandaragh, Phys. B 583, 412064 (2020)

    Article  CAS  Google Scholar 

  29. M. B. J., Emergent Research on Polymeric and Composite Materials (IGI Global, Hershey, 2018), pp. 209–224.

  30. M.A. Alavi, A. Morsali, Ultrason. Sonochem. 17, 441 (2010)

    Article  CAS  Google Scholar 

  31. H. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)

    Google Scholar 

  32. H.Y. Zahran, S.S. Shneouda, I.S. Yahia, F. El-Tantawy, J. Sol-Gel Sci. Technol. 86, 104 (2018)

    Article  CAS  Google Scholar 

  33. S.S. Shenouda, H.Y. Zahran, I.S. Yahia, Mater. Res. Express 6, 105042 (2019)

    Article  CAS  Google Scholar 

  34. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  35. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  CAS  Google Scholar 

  36. V.R. Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kil, C.-J. Choi, J. Electron. Mater. 43, 3499 (2014)

    Article  Google Scholar 

  37. H. Schroeder, J. Appl. Phys. 117, 215103 (2015)

    Article  Google Scholar 

  38. J.G. Simmons, Phys. Rev. 155, 657 (1967)

    Article  CAS  Google Scholar 

  39. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 319 (1971)

    Google Scholar 

  40. E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

Download references

Acknowledgements

All authors would like to thank Gazi University (Project No: GU-BAP.05/2019-26) Scientific Research Center and Amasya University (Project No: FMB-BAP 18-0319) Scientific Research Center for the supports and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Demirezen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroğlu, A., Demirezen, S., Azizian-Kalandaragh, Y. et al. A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. J Mater Sci: Mater Electron 31, 14466–14477 (2020). https://doi.org/10.1007/s10854-020-04006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04006-1

Navigation