Skip to main content

Advertisement

Log in

Copper/functionalized-carbon nanotubes composite films with ultrahigh electrical conductivity prepared by pulse reverse electrodeposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have been proved a significant role as the reinforcement material in improving the mechanical and electrical properties of metal matrix composites due to their high mechanical properties, excellent electrical and thermal conductivity as well as unique atomic structure. In addition, the dispersion of CNTs has been a key factor in fabricating of metal-based complex especially for copper (Cu) with performance improvement. In the present paper, the well dispersion of functionalized CNTs (F-CNTs) is obtained at the first time, accompanied by using pulse reverse electrodeposition (PRED) technology, leading to formation of the ultrahigh electrical conductivity composite films of Cu/F-CNTs. These composite films exhibit an ultrahigh electrical conductivity of up to 6.1 × 107 S/m (increased by 105.4% of that international annealed copper standard, IACS), but maintain a high hardness of 82.3 HV and tensile strength of 297.1 MPa. It is believed that this work opens new perspectives to develop ultrahigh electrical conductivity composite materials and would role as electric wire for reducing energy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.E. Mendoza, I.G. Solórzano, E.A. Brocchi, Mater. Sci. Eng. A 544, 21–26 (2012)

    Article  CAS  Google Scholar 

  2. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, M. Ramakrishna, R.C. Gundakaram, T.N. Rao, G. Sundararajan, Cryst. Growth Des. 15, 4448–4458 (2015)

    Article  CAS  Google Scholar 

  3. Z. Li, H. Wang, Q. Guo, Z. Li, D.-B. Xiong, Y. Su, H. Gao, X. Li, D. Zhang, Nano Lett. 18, 6255–6264 (2018)

    Article  CAS  Google Scholar 

  4. S. Zhao, Y. Wu, Z. Sun, B. Zhou, X. Liu, ACS Appl. Nano Mater. 1, 5382–5388 (2018)

    Article  CAS  Google Scholar 

  5. Y.Q. Liu, Z.D. Chen, J.W. Mao, D.D. Han, X. Sun, Front. Chem. 7, 461 (2019)

    Article  CAS  Google Scholar 

  6. E. Della Gaspera, R. Tucker, K. Star, E.H. Lan, Y.S. Ju, B. Dunn, ACS Appl. Mater. Interfaces 5, 10966–10974 (2013)

    Article  CAS  Google Scholar 

  7. H. Zhang, P. Zong, M. Chen, H. Jin, Y. Bai, S. Li, F. Ma, H. Xu, K. Lian, ACS Nano 13, 3054–3062 (2019)

    Article  CAS  Google Scholar 

  8. P. Ruiz, M. Muñoz, J. Macanás, D.N. Muraviev, Chem. Mater. 22, 6616–6623 (2010)

    Article  CAS  Google Scholar 

  9. M. Ben-Sasson, K.R. Zodrow, Q. Genggeng, Y. Kang, E.P. Giannelis, M. Elimelech, Environ. Sci. Technol. 48, 384–393 (2014)

    Article  CAS  Google Scholar 

  10. A.M.K. Esawi, M.M. Farag, Mater. Des. 28, 2394–2401 (2007)

    Article  CAS  Google Scholar 

  11. Z. Wang, X. Cai, C. Yang, L. Zhou, J. Alloy. Compd. 735, 905–913 (2018)

    Article  CAS  Google Scholar 

  12. G. Chai, Y. Sun, J.J. Sun, Q. Chen, J. Micromech. Microeng. 18, 035013 (2008)

    Article  Google Scholar 

  13. O. Hjortstam, P. Isberg, S. Söderholm, H. Dai, Appl. Phys. A 78, 1175–1179 (2004)

    Article  CAS  Google Scholar 

  14. S.J. Yoo, S.H. Han, W.J. Kim, Carbon 61, 487–500 (2013)

    Article  CAS  Google Scholar 

  15. C. Subramaniam, Y. Yasuda, S. Takeya, S. Ata, A. Nishizawa, D. Futaba, T. Yamada, K. Hata, Nanoscale 6, 2669–2674 (2014)

    Article  CAS  Google Scholar 

  16. C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, M. Yumura, K. Hata, Nat. Commun. 4, 2202 (2013)

    Article  Google Scholar 

  17. S. Cho, K. Takagi, H. Kwon, D. Seo, K. Ogawa, K. Kikuchi, A. Kawasaki, Surf. Coat. Technol. 206, 3488–3494 (2012)

    Article  CAS  Google Scholar 

  18. H. Wu, Z. Zheng, C.Y. Toe, X. Wen, J.N. Hart, R. Amal, Y.H. Ng, J. Mater. Chem. A 8, 5638–5646 (2020)

    Article  CAS  Google Scholar 

  19. Y. Wang, A.S. Hall, ACS Energy Lett. 5, 17–22 (2019)

    Article  Google Scholar 

  20. H. Wu, Z. Zheng, Y. Tang, N.M. Huang, R. Amal, H.N. Lim, Y.H. Ng, Sustain. Mater. Technol. 18, e00075 (2018)

    CAS  Google Scholar 

  21. C.L. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, G. Sundararajan, Sci. Rep. 4, 4049 (2014)

    Article  Google Scholar 

  22. Y.L. Yang, Y.D. Wang, Y. Ren, C.S. He, J.N. Deng, J. Nan, J.G. Chen, L. Zuo, Mater. Lett. 62, 47–50 (2008)

    Article  CAS  Google Scholar 

  23. M. Ye, C. Hu, L. Lv, L. Qu, J. Power Sources 305, 106–114 (2016)

    Article  CAS  Google Scholar 

  24. S. Cho, K. Kikuchi, E. Lee, M. Choi, I. Jo, S.B. Lee, S.K. Lee, A. Kawasaki, Sci. Rep. 7, 14943 (2017)

    Article  Google Scholar 

  25. F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Adv. Mater. 27, 4351–4357 (2015)

    Article  CAS  Google Scholar 

  26. X.H. Wang, B.S. Guo, S. Ni, J.H. Yi, M. Song, Powder Metall. Mater. Sci. Eng. 23, 1673–0224 (2018)

    Google Scholar 

  27. C. Wang, L. Zhao, J. Jia, D.Y. Wang, Z.R. Peng, Trans. China Electrotech. Soc. 34(Sup 2) (2019)

  28. X.H. Chen, J.X. Wang, X.Q. Li, S.L. Li, F.M. Deng, F.Q. Cheng, Surf. Technol. 31, 36–39 (2002)

    CAS  Google Scholar 

  29. X.X. Qin, Beijing University of Chemical Technology (2010)

  30. A.D. Mueller, L.Y.M. Tobing, D.H. Zhang, Adv. Mater. Technol. 4, 1800364 (2019)

    Article  Google Scholar 

  31. J.Z. Zhang Hanzhuo, L. Jianshe, L. Guangyu, J. Jilin Univ. (Engineering and Technology Edition) 37 (2007)

  32. C.T.J. Low, R.G.A. Wills, F.C. Walsh, Surf. Coat. Technol. 201, 371–383 (2006)

    Article  CAS  Google Scholar 

  33. Z. Niu, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, W. Zhou, S. Xie, Adv. Funct. Mater. 22, 5209–5215 (2012)

    Article  CAS  Google Scholar 

  34. D.H. Nam, Y.K. Kim, S.I. Cha, S.H. Hong, Carbon 50, 4809–4814.

  35. T. Zuo, J. Li, Z. Gao, Y. Wu, L. Zhang, B. Da, X. Zhao, L. Xiao, Mater. Today Commun. 23, 100907 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos the 51802303, and Dalian National Laboratory for clean Energy (DNL) Cooperation Fund, Chinese Academy of Sciences (CAS) under Grant Nos the DNL180304. We also acknowledge the financial support from Hundred-Talent Program (CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoshun Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Xue, J., Zuo, T. et al. Copper/functionalized-carbon nanotubes composite films with ultrahigh electrical conductivity prepared by pulse reverse electrodeposition. J Mater Sci: Mater Electron 31, 14184–14191 (2020). https://doi.org/10.1007/s10854-020-03974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03974-8

Navigation