Skip to main content
Log in

Influence of different milling time on synthesized Ni–Zn ferrite properties by mechanical alloying method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main issue in this study was to investigate the effect of milling time on the synthesis of nickel–zinc ferrite by mechanical alloying method by parameter optimization approach and achieving nickel–zinc ferrite with high saturation magnetization and low coercivity. For the synthesis of nickel–zinc ferrite, nickel, zinc and iron oxides were milled in different proportions by planetary ball milling. To investigate the effect of milling time, sampling was performed every 2.5 h to 10 h and then every 10 h to 40 h. To prevent agglomeration of the particles and reduce their surface energy, deionized distilled water was used as the milling media. After completion of milling, the samples were dried in air. To complete the synthesis process, the powders were first calcined at 900 °C for 5 h and then sintered at 1200 °C for 3 h in the high-temperature furnace. Samples from each step were characterized by an X-ray diffraction test, which showed an increase in the amount of ferrite synthesized with increasing milling time. The Fourier-Transform Infrared Spectroscopy (FTIR) test according to the peaks at the wavelengths of 1100 cm−1 and 1600 cm−1 confirmed the existence of nickel–zinc ferrite. Magnetic sample vibration test (VSM) investigated the optimum sample (40 h milled) magnetic properties and its saturation magnetization, residual magnetization, and coercivity were 54 A m2/kg, 1 A m2/kg, and 1.99 × 103 A/m, respectively. The particle size and morphology of nickel–zinc ferrite particles were investigated using Field Emission scanning electron microscopy (FESEM) and the average particle size of the optimum sample was ~ 41 nm. This result is confirmed by particle size distribution (PSA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Smit, H.P.J. Wijn, Ferrites (Philips technical library, Eindhoven, 1959)

    Google Scholar 

  2. A. Goldman, Modern ferrite technology (Springer Science & Business Media, New York, 2006)

    Google Scholar 

  3. K.K. Kefeni, T.A. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215, 37–55 (2017)

    Article  CAS  Google Scholar 

  4. A.C.F.M. Costa, R.T. Lula, R.H.G.A. Kiminami, L.F.V. Gama, A.A. De Jesus, H.M.C. Andrade, Preparation of nanostructured NiFe2O4 catalysts by combustion reaction. J. Mater. Sci. 41(15), 4871–4875 (2006)

    Article  CAS  Google Scholar 

  5. V. Manikandan, S. Sikarwar, B.C. Yadav, S. Vigneselvan, R.S. Mane, J. Chandrasekaran, A. Mirzaei, Rapid humidity sensing activities of lithium-substituted copper-ferrite (Li–CuFe2O4) thin films. Mater. Chem. Phys. 229, 448–452 (2019)

    Article  CAS  Google Scholar 

  6. D.H. Reddy, Y.S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016)

    Article  CAS  Google Scholar 

  7. M. Kuru, T.Ş. Kuru, S. Bağcı, The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites. J. Mater. Sci. 30(6), 5438–5453 (2019)

    CAS  Google Scholar 

  8. M.M. Kothawale, R.B. Tangsali, G.K. Naik, J.S. Budkuley, Enhancement of magnetization and tailoring of blocking temperatures of nano-Ni–Zn ferrite powder synthesized using microwave-assisted combustion method. J. Supercond. Novel Magn. 32(2), 373–379 (2019)

    Article  CAS  Google Scholar 

  9. A.V. Anupama, V. Rathod, V.M. Jali, B. Sahoo, Composition dependent elastic and thermal properties of LiZn ferrites. J. Alloy. Compd. 728, 1091–1100 (2017)

    Article  CAS  Google Scholar 

  10. Yu Gao, Z. Wang, J. Pei, H. Zhang, Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J. Alloy. Compd. 774, 1233–1242 (2019)

    Article  CAS  Google Scholar 

  11. S.L. Reddy, T.R. Reddy, N. Roy, R. Philip, O.A. Montero, T. Endo, R.L. Frost, Synthesis and spectroscopic characterization of copper zinc aluminum nanoferrite particles. Spectrochimica Acta Part A 127, 361–369 (2014)

    Article  Google Scholar 

  12. A. Bajorek, C. Berger, M. Dulski, P. Łopadczak, M. Zubko, K. Prusik, M. Wojtyniak, A. Chrobak, F. Grasset, N. Randrianantoandro, Microstructural and magnetic characterization of Ni0.5Zn0.5Fe2O4 ferrite nanoparticles. J. Phys. Chem. Solids 129, 1–21 (2019)

    Article  CAS  Google Scholar 

  13. Y.G. Ma, M.Z. Jin, M.L. Liu, G. Chen, Y. Sui, Y. Tian, G.J. Zhang, Y.Q. Jia, Effect of high pressure on Mössbauer spectra of NiFe2O4 ultrafine particles with different grain sizes. Mater. Chem. Phys. 65(1), 79–84 (2000)

    Article  CAS  Google Scholar 

  14. M. Tsvetkov, M. Milanova, L.C. Pereira, J.C. Waerenbourgh, Z. Cherkezova-Zheleva, J. Zaharieva, I. Mitov, Magnetic properties of binary and ternary mixed metal oxides NiFe2O4 and Zn0.5Ni0.5Fe2O4 doped with rare earths by sol–gel synthesis. Chem. Papers 70(12), 1600–1610 (2016)

    Article  CAS  Google Scholar 

  15. F. Gandomi, S.M. Peymani-Motlagh, M. Rostami, A. Sobhani-Nasab, M. Fasihi-Ramandi, M. Eghbali-Arani, M.R. Ganjali, Simple synthesis and characterization of Li0.5Fe2.5O4, LiMg0.5Fe2O4 and LiNi0.5Fe2O4, and investigation of their photocatalytic and anticancer properties on hela cells line. J. Mater. Sci. 30(22), 19691–19702 (2019)

    CAS  Google Scholar 

  16. J. Bennet, R. Tholkappiyan, K. Vishista, N.V. Jaya, F. Hamed, Attestation in self-propagating combustion approach of spinel AFe2O4 (A = Co, Mg and Mn) complexes bearing mixed oxidation states: magnetostructural properties. Appl. Surf. Sci. 383, 113–125 (2016)

    Article  CAS  Google Scholar 

  17. P.P.C. Sartoratto, M.A.G. Soler, T.M. Lima, F.L.R. Silva, T.V. Trufini, V.K. Garg, A.C. Oliveira, P.C. Morais, Size-modulation of thermally-annealed nanosized cobalt ferrite particles. Phys. Procedia 9, 10–14 (2010)

    Article  CAS  Google Scholar 

  18. S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co0.6Zn0.4CrxFe2−xO4 (0⩽ x⩽ 10) prepared via sol–gel auto-combustion method. J. Mol. Struct. 1012, 162–167 (2012)

    Article  CAS  Google Scholar 

  19. M.A. Gabal, S. Kosa, T.S. AlMutairi, Structural and magnetic properties of Ni1−xZnxFe2O4 nano-crystalline ferrites prepared via novel chitosan method. J. Mol. Struct. 1063, 269–273 (2014)

    Article  CAS  Google Scholar 

  20. M. Rostami et al., Facile synthesis and characterization of TiO2–graphene–ZnFe2–xTbxO4 ternary nano-hybrids. J. Mater. Sci. 52, 7008–7016 (2017)

    Article  CAS  Google Scholar 

  21. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: a Raman, Mössbauer, X-ray diffraction and electron spectroscopy study. Mater. Sci. Eng. B 206, 69–78 (2016)

    Article  CAS  Google Scholar 

  22. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties. J. Mater. Sci. 30(6), 5854–5865 (2019)

    CAS  Google Scholar 

  23. R. Tholkappiyan, K. Vishista, Combustion synthesis of Mg–Er ferrite nanoparticles: cation distribution and structural, optical, and magnetic properties. Mater. Sci. Semicond. Process. 40, 631–642 (2015)

    Article  CAS  Google Scholar 

  24. S. Verma, J. Chand, M. Singh, Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0.2Mn0.5Ni0.3AlyFe2−yO4 ferrites synthesized by citrate precursor method. J. Alloys Compd. 587, 763–770 (2014)

    Article  CAS  Google Scholar 

  25. S.J. Azhagushanmugam, N. Suriyanarayanan, R. Jayaprakash, Synthesis and characterization of nanocrystalline Ni (0.6) Zn (0.4) Fe2O4 spinel ferrite magnetic material. Phys. Procedia 49, 44–48 (2013)

    Article  CAS  Google Scholar 

  26. M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A.F. Shojaie, M.D. Rafiee, Synthesis and characterization of ZnFe 2–x Yb x O 4–graphene nanocomposites by sol–gel method. J. Mater. Sci. 27(11), 11940–11945 (2016)

    CAS  Google Scholar 

  27. Z.Ž. Lazarević, Č. Jovalekić, V.N. Ivanovski, A. Rečnik, A. Milutinović, B. Cekić, N.Ž. Romčević, Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route. J. Phys. Chem. Solids 75(7), 869–877 (2014)

    Article  Google Scholar 

  28. G.S. Luo, W.P. Zhou, J.D. Li, G.W. Jiang, S.L. Tang, Y.W. Du, Investigation on nickel concentration dependence structural, dielectric and magnetic properties of Ni–Zn ferrites. J. Mater. Sci. 29(14), 12489–12495 (2018)

    CAS  Google Scholar 

  29. M.A. Gabal, Y.M. Al-Angari, F.A. Al-Agel, Cr-substituted Ni–Zn ferrites via oxalate decomposition. structural, electrical and magnetic properties. J. Magn. Magn. Mater. 391, 108–115 (2015)

    Article  CAS  Google Scholar 

  30. S.E. Jacobo, P.G. Bercoff, Structural and electromagnetic properties of yttrium-substituted Ni–Zn ferrites. Ceram. Int. 42(6), 7664–7668 (2016)

    Article  CAS  Google Scholar 

  31. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. J. Magn. Magn. Mater. 363, 114–120 (2014)

    Article  CAS  Google Scholar 

  32. A.A. Al-Ghamdi, F.S. Al-Hazmi, L.S. Memesh, F.S. Shokr, L.M. Bronstein, Effect of mechanochemical synthesis on the structure, magnetic and optical behavior of Ni1−xZnxFe2O4 spinel ferrites. Ceram. Int. 43(8), 6192–6200 (2017)

    Article  CAS  Google Scholar 

  33. N.-N. Jiang, Y. Yang, Y.-X. Zhang, J.-P. Zhou, P. Liu, C.-Y. Deng, Influence of zinc concentration on structure, complex permittivity and permeability of Ni–Zn ferrites at high frequency. J. Magn. Magn. Mater. 401, 370–377 (2016)

    Article  CAS  Google Scholar 

  34. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys. 115(24), 243904 (2014)

    Article  Google Scholar 

  35. H. Abdollah, H. Mansor, E.K. Reza, M.M. Taghi, Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline. Chin. Phys. B 24(4), 048102 (2015)

    Article  Google Scholar 

  36. S. Dey, S.K. Dey, B. Ghosh, P. Dasgupta, A. Poddar, V.R. Reddy, S. Kumar, Role of inhomogeneous cation distribution in magnetic enhancement of nanosized Ni0.35Zn0.65Fe2O4: a structural, magnetic, and hyperfine study. J. Appl. Phys. 114(9), 093901 (2013)

    Article  Google Scholar 

  37. L. Yu, J. Zhang, Y. Liu, C. Jing, S. Cao, Fabrication, structure and magnetic properties of nanocrystalline NiZn-ferrite by high-energy milling. J. Magn. Magn. Mater. 288, 54–59 (2005)

    Article  CAS  Google Scholar 

  38. L. Sachelarie, C. Doroftei, E. Rezlescu, Microstructure and magnetic and electrical properties of low-temperature sintering Ni–Zn, Li–Zn and Mg–Zn–Cu ferrites without and with addition of lead oxide. J. Optoelectron. Adv. Mater. 12(4), 864–867 (2010)

    CAS  Google Scholar 

  39. K.A. Nekouee, A.H. Rahimi, M.A. Haghighi, N. Ehsani, The effects of bismuth oxide on microstructures and magnetic properties of Mn–Mg–Al Ferrites. J. Electron. Mater. 47(7), 4078–4084 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. A. Nekouee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moravvej-Farshi, F., Amishi, M. & Nekouee, K.A. Influence of different milling time on synthesized Ni–Zn ferrite properties by mechanical alloying method. J Mater Sci: Mater Electron 31, 13610–13619 (2020). https://doi.org/10.1007/s10854-020-03917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03917-3

Navigation