Skip to main content
Log in

Comprehensive experimental study on production of vertically aligned ZnO nanorod thin films and their electrical, optical and antimicrobial properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One-dimensional (1D) zinc oxide (ZnO) nanomaterials (e.g. nanorods, nanowires) are the most important due to their electrical and optical properties. As the surface-to-volume ratio in ZnO nanorods (NRs) is very high, the surface states have a crucial role on optical and other properties. So, determination of the production parameters of the ZnO-NRs is important. In this study, a well-aligned ZnO-NRs thin film was produced via the sol–gel and hydrothermal methods. For this purpose, in the first step, a ZnO seed layer was coated onto a cleaned microscope glass slide (sizes of 1.25 × 3.75 cm) by the sol–gel spin coating method. In the second step, ZnO-NRs were grown on the ZnO seed layer by the hydrothermal method. Production parameters for the first step, such as type of the zinc salt; type of the solvent; solution concentration; type of the stabilizer; ageing time process of the solution; spin speed; duration of the spin process; number of repeated coating cycle; heating treatment temperature between coating cycles; duration between coating cycles; final heating treatment temperature and final heating treatment duration of the ZnO seed layer, were obtained. Then similar optimization processes were repeated for the second stage for the ZnO-NRs. The crystal structure, morphological and optical properties of all the produced samples were characterized via X-ray diffraction (XRD) spectroscopy; scanning electron microscopy (SEM); and ultraviolet–visible (UV–Vis) spectroscopy. For comparison, ZnO-NR powders were produced via the mechanochemical solid-state combustion method. The electrical conductivity and optical transparency of the ZnO-NR thin film samples were higher than those of the ZnO-NR powder sample. It was also observed that the well-aligned ZnO-NR thin film sample had a higher bactericidal effect against Bacillus thuringiensis than the ZnO-NR powder sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Liu, Y. Li, H. Zeng, ZnO-based transparent conductive thin films: doping, performance, and processing. J. Nanomater. 2013, 196521–196529 (2013)

    Google Scholar 

  2. H. Morkoç, U. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2009)

    Book  Google Scholar 

  3. K. Yu, J. Chen, Enhancing solar efficiencies through 1-D nanostructures. Nanoscale Res. Lett. 4, 1–10 (2009)

    Article  CAS  Google Scholar 

  4. N. Rajeswari Yogamalar, A. Chandra Bose, Synthesis, dopant study and device fabrication of zinc oxide nanostructures. Prog. Nanotech. Nanomater. 2, 1–20 (2013)

    Google Scholar 

  5. N. Han, F. Wang, J.C. Ho, One-dimensional nanostructured materials for solar energy harvesting. Nanomater. Energ. 1, 4–17 (2011)

    Article  Google Scholar 

  6. K. Ogata, K. Maejima, Sz Fujita, Sg Fujita, Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy. J. Cryst. Growth 248, 25–30 (2003)

    Article  CAS  Google Scholar 

  7. J.J. Wu, S.C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 215–218 (2002)

    Article  CAS  Google Scholar 

  8. J. Zhao, L. Qin, L. Zhang, Synthesis of quasi-aligned Si-doped ZnO nanorods on Si substrate. Physica E 40, 795–799 (2008)

    Article  CAS  Google Scholar 

  9. N. Huang, M.W. Zhub, L.J. Gaoa, J. Gonga, C. Suna, X. Jiang, A template-free sol–gel technique for controlled growth of ZnO nanorod arrays. Appl. Surf. Sci. 257, 6026–6033 (2011)

    Article  CAS  Google Scholar 

  10. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)

    Article  CAS  Google Scholar 

  11. N.S. Ridhuan, K. Abdul Razak, Z. Lockman, A. Abdul, Aziz, Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS ONE 7, e50405–e50415 (2012)

    Article  CAS  Google Scholar 

  12. Y.N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 5, 2850–2871 (2012)

    Article  CAS  Google Scholar 

  13. K. Gupta, R.P. Singh, A. Pandey, A. Pandey, P. Aeruginosa, E. Coli, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. Beilstein J. Nanotechnol. 4, 345–351 (2013)

    Article  Google Scholar 

  14. R. Rodrigo, M. Libuy, F. Feliu, D. Hasson, Molecular basis of cardioprotective effect of antioxidant vitamins in myocardial infarction. Biomed. Res. Int. 2013, 437613 (2013)

    Article  Google Scholar 

  15. V. Neto, J. Lencart, A. Dias, J. Santos, A. Ramos, C. Relvas, The effect of megavoltage radiation on polymeric materials to be used in biomedical devices. J. Nanosci. Nanotechnol. 12, 6779–6784 (2012)

    Article  CAS  Google Scholar 

  16. S. Al-Heniti, A. Umar, Structural, optical and field emission properties of urchinshaped ZnO nanostructures. J. Nanosci. Nanotechnol. 13, 86–90 (2013)

    Article  CAS  Google Scholar 

  17. H. Çolak, E. Karaköse, F. Duman, High optoelectronic and antimicrobial performances of green synthesized ZnO nanoparticles by using Aesculus hippocastanum. Environ. Chem. Lett. 15, 547–552 (2017)

    Article  Google Scholar 

  18. S. Kim, G. Nam, H. Park, H. Yoon, S.-H. Lee, J. Kim, K.J. Su, D.Y. So, S.O. Kim, J.Y. Kim, Leem, Effects of doping with Al, Ga, and In on structural and optical properties of ZnO nanorods grown by hydrothermal method. Bull. Korean Chem. Soc. 34, 1205–1211 (2013)

    Article  CAS  Google Scholar 

  19. H. Çolak, E. Karaköse, G. Kartopu, Effect of consumption of the sol-gel deposited ZnO seed layer on the growth and properties of high quality ZnO nanorods. J. Mater. Sci. Mater. Electron. 29, 11964–11971 (2018)

    Article  Google Scholar 

  20. H. Çolak, E. Karaköse, Y. Derin, Properties of ZnO nanostructures produced by mechanochemical-solid state combustion method using different precursors. Mater. Chem. Phys. 193, 427–437 (2017)

    Article  Google Scholar 

  21. H. Çolak, E. Karaköse, Synthesis and characterization of different dopant (Ge, Nd, W)-doped ZnO nanorods and their CO2 gas sensing applications. Sensors Actuators B Chem. 296, 126629 (2019)

    Article  Google Scholar 

  22. O. Soberanis, G. Oskam, The effect of water on the nucleation of ZnO nanoparticles. ECS Trans. 3, 17–21 (2006)

    CAS  Google Scholar 

  23. J. Song, S. Baek, J. Lee, S. Lim, Role of OH- in the low temperature hydrothermal synthesis of ZnO nanorods. J. Chem. Technol. Biotechnol. 83, 345–350 (2008)

    Article  CAS  Google Scholar 

  24. Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, S. Kaitong, Y. Dongqi, Controllable growth of wellaligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Appl. Surf. Sci. 256, 1698–1702 (2010)

    Article  CAS  Google Scholar 

  25. H. Çolak, E. Karaköse, Structural, electrical and optical properties of green synthesized ZnO nanoparticles using aqueous extract of thyme (Thymus vulgaris). J. Mater. Sci. Mater. Electron. 28, 12184–12190 (2017)

    Article  Google Scholar 

  26. S. Yilmaz, The geometric resistivity correction factor for several geometrical samples. J. Semicond. 36, 082001–082008 (2015)

    Article  Google Scholar 

  27. F. Xian, W. Bai, L. Xu, X. Wang, X. Li, Controllable growth of ZnO nanorods by seed layers annealing using hydrothermal method. Mater. Lett. 108, 46–49 (2013)

    Article  CAS  Google Scholar 

  28. C.S. Prajapati, P.P. Sahay, Effect of precursors on structure, optical and electrical properties of chemically deposited nanocrystalline ZnO thin films. Appl. Surf. Sci. 258, 2823–2828 (2012)

    Article  CAS  Google Scholar 

  29. C.H. Kwon, H.K. Hong, D.H. Yun, K. Lee, S.T. Kim, Y.H. Roh, B.H. Lee, Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems. Sensors Actuators B 25, 610–613 (1995)

    Article  CAS  Google Scholar 

  30. P.P. Sahay, R.K. Nath, Al-doped ZnO thin films as methanol sensors. Sensors Actuators B 134, 654–659 (2008)

    Article  CAS  Google Scholar 

  31. R.C. De Souza, L.U. Haberbeck, H.G. Riella, D.H.B. Ribeiro, B.A.M. Carciofi, Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazil. J. Chem. Eng. 36, 885–893 (2019)

    Article  Google Scholar 

  32. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. App. Environ. Microbiol. 77, 2325–2331 (2011)

    Article  CAS  Google Scholar 

  33. R. Farzana, P. Iqra, F. Shafaq, S. Sumaira, K. Zakia, T. Hunaiza, M. Husna, Antimicrobial behavior of zinc oxide nanoparticles and β-lactam antibiotics against pathogenic bacteria. Arch. Clin. Microbiol. 8, 1–5 (2017)

    Google Scholar 

Download references

Acknowledgements

This research is financially supported by TUBITAK (The Scientific and Technological Research Council of Turkey) Project Number 114Z572 and Çankırı Karatekin University (BAP; FF28015B12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Çolak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çolak, H., Karaköse, E., Deri̇n, Y. et al. Comprehensive experimental study on production of vertically aligned ZnO nanorod thin films and their electrical, optical and antimicrobial properties. J Mater Sci: Mater Electron 31, 9753–9772 (2020). https://doi.org/10.1007/s10854-020-03521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03521-5

Navigation