Skip to main content
Log in

Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium trioxide (In2O3) nanoparticles prepared using a solvothermal reaction were coated on the surface of graphene nanoribbon (GNR) to serve as a core for the manufacture of polyaniline (PANI)/In2O3/GNR ternary nanocomposites produced using in situ chemical oxidative polymerization. The gas-sensing properties of nanocomposites were evaluated by a homemade dynamic test system at room temperature, which was equipped with a real-time resistance acquisition platform. The response value of the PANI/In2O3/GNR sensor with the loading of 3 wt% In2O3 nanoparticles and an exposure of 4 ppm NH3 was 27.1, which was about 3 or more times higher than that of PANI sensor. This sensor was shown to be very sensitive to the detection of NH3 in the concentration range of 0.65–1.69 ppm at room temperature, which is critical in the detection of hepatic or kidney disease in the human breath. The PANI/In2O3/GNR sensor also revealed higher selectivity and repeatability when exposed to 0.65 ppm NH3 at room temperature. Because of the excellent selectivity and repeatability in the detection of 0.65 ppm NH3 at room temperature obtained in this report, it is believed that the PANI/In2O3/GNR nanocomposites sensor will be a promising gas-sensing material for the detection of hepatic or kidney disease in human breath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Phillips, J. Herrera, S. Krishnan, M. Zain, J. Greenberg, R.N. Cataneo, Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B 729, 75–88 (1999)

    Article  CAS  Google Scholar 

  2. M. Phillips, R.N. Cataneo, A.R.C. Cummin, A.J. Gagliardi, K. Gleeson, J. Greenberg, R.A. Maxfield, W.N. Rom, Detection of lung cancer with volatile markers in the breath. Chest. J. 123, 2115–2123 (2003)

    Article  CAS  Google Scholar 

  3. H. Haick, Y.Y. Broza, P. Mochalski, V. Ruzsanyi, A. Amann, Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 43, 1423–1449 (2014)

    Article  CAS  Google Scholar 

  4. A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, A. Amann, Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 265, 49–59 (2007)

    Article  CAS  Google Scholar 

  5. R. Capuano, M. Santonico, G. Pennazza, S. Ghezzi, E. Martinelli, C. Roscioni, G. Lucantoni, G. Galluccio, R. Paolesse, C.D. Natale, A. D’Amico, The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs. Sci. Rep. 5, 16491 (2015)

    Article  CAS  Google Scholar 

  6. B. Grabowska-Polanowska, J. Faber, M. Skowron, P. Miarka, A. Pietrzycka, I. Sliwka, A. Amann, Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J. Chromatogr. A 1301, 179–189 (2013)

    Article  CAS  Google Scholar 

  7. S. Davies, P. Spanel, D. Smith, Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 52, 223–228 (1997)

    Article  CAS  Google Scholar 

  8. C. Turner, P. Španěl, D. Smith, A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry SIFT-MS. Physiol. Meas. 27, 321 (2006)

    Article  Google Scholar 

  9. L.K. Buckley, G.E. Collins, Conductive polymer-coated fabrics for chemical sensing. Synth. Met. 78, 93–101 (1996)

    Article  Google Scholar 

  10. G. Ciric-Marjanovic, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 177, 1–47 (2013)

    Article  CAS  Google Scholar 

  11. M. Eising, C.E. Cava, R.V. Salvatierra, A.J.G. Zarbin, L.S. Roman, Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B 245, 25–33 (2017)

    Article  CAS  Google Scholar 

  12. L. Xue, W. Wang, Y. Guo, G. Liu, P. Wan, Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors. Sens. Actuators B 244, 47–53 (2017)

    Article  CAS  Google Scholar 

  13. C. Liu, H. Tai, P. Zhang, Z.X. Yuan Du, G. Xie, Y. Jiang, A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B 261, 587–597 (2018)

    Article  CAS  Google Scholar 

  14. S. Li, P. Lin, L. Zhao, C. Wang, D. Liu, F. Liu, P. Sun, X. Liang, F. Liu, X. Yan, Y. Gao, G. Lu, The room temperature gas sensor based on polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sens. Actuators B 259, 505–513 (2018)

    Article  CAS  Google Scholar 

  15. C.W. Na, J.H. Kim, H.J. Kim, H.S. Woo, A. Gupta, H.K. Kim, J.H. Lee, Highly selective and sensitive detection of NO2 using rGO-In2O3 structure on flexible substrate at low temperature. Sens. Actuators B 255, 1671–2167 (2018)

    Article  CAS  Google Scholar 

  16. H.P. Oliveira, S.A. Sydlik, T.M. Swager, Supercapacitors from free standing polypyrrole/graphene nanocomposites. J. Phys. Chem. C 117, 10270–10276 (2013)

    Article  Google Scholar 

  17. L. Li, A.R.O. Raji, H.L. Fei, Y. Yang, E.L.G. Samuel, J.M. Tour, Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interfaces 5, 6622–6627 (2013)

    Article  CAS  Google Scholar 

  18. M.K. Liu, W.W. Tjiu, J.S. Pan, C. Zhang, W. Gao, T.X. Liu, One-step synthesis of graphene nanoribbon–MnO2 hybrids and their all-solid-state asymmetric supercapacitors. Nanoscale 6, 4233–4242 (2014)

    Article  CAS  Google Scholar 

  19. D. Zhang, Z. Wu, P. Li, X. Zong, G. Dong, Y. Zhang, Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sens. Actuators B 258, 895–905 (2018)

    Article  CAS  Google Scholar 

  20. X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E.S.W. Kong, H. Wei, Y. Zhang, Reduced graphene oxide-polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22, 22488 (2012)

    Article  CAS  Google Scholar 

  21. H. Tai, X. Xu, Z. Ye, C. Liu, G. Xie, Y. Jiang, P-P heterojunction sensor of self-assembled polyaniline nano-thin film/microstructure silicon array for NH3 detection. Chem. Phys. Lett. 621, 58–64 (2015)

    Article  CAS  Google Scholar 

  22. Z. Pang, Q. Nie, A. Wei, J. Yang, F. Huang, Q. Wei, Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers. J. Mater. Sci. 52, 686–695 (2016)

    Article  Google Scholar 

  23. Z. Pang, J. Yu, D. Li, Q. Nie, J. Zhang, Q. Wei, Free-standing TiO2–SiO2/PANI composite nanofibers for ammonia sensors. J. Mater. Sci. Mater. Electron. 29, 3576–3583 (2017)

    Article  Google Scholar 

  24. X. Wang, S. Meng, M. Tebyetekerwa, W. Weng, J. Pionteck, B. Sun, Z. Qin, M. Zhu, Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synth. Met. 233, 86–93 (2017)

    Article  CAS  Google Scholar 

  25. Y. Qin, L. Wang, X. Wang, A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH3 detection. Org. Electron. 66, 102–109 (2019)

    Article  CAS  Google Scholar 

  26. S. Mousavi, K. Kang, J. Park, I. Park, A room temperature hydrogen sulfide gas sensor based on electrospun polyaniline–polyethylene oxide nanofibers directly written on flexible substrates. RSC Adv. 6, 104131–104138 (2016)

    Article  CAS  Google Scholar 

  27. D. Zhang, Z. Wu, X. Zong, Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sens. Actuators B 288, 232–242 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this work is provided by the Ministry of Science and Technology (MOST) under Grand MOST 108-2212-E-005-006 and the Ministry of Education under the project of Innovation and Development Center of Sustainable Agriculture (IDCSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ming Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LH., Wu, TM. Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature. J Mater Sci: Mater Electron 31, 7276–7283 (2020). https://doi.org/10.1007/s10854-020-03299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03299-6

Navigation