Skip to main content
Log in

K dopant effect on \({\hbox {La}}_{0.7}{\hbox {K}}_{x} {\hbox {Ca}}_{0.3-x}{\hbox {MnO}}_{3}\) (\(x=0,\) 0.05, 0.1) perovskite compounds: the structural, magnetic and magnetocaloric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

\({\hbox {La}}_{0.7}{\hbox {K}}_{x}{\hbox {Ca}}_{0.3-x}{\hbox {MnO}}_{3}\) (\(x=0,\) 0.05, 0.1) perovskites were prepared by sol–gel method. The K-doped effect was determined by the structural, magnetic, and magnetocaloric properties of the compounds. In the crystal structure of K-doped \({\hbox {La}}_{0.7}{\hbox {Ca}}_{0.3}{\hbox {MnO}}_{3},\) Mn–O–Mn bond angle slightly increases with K addition. The transition shifts the range of 270–320 K when the K is added in \({\hbox {La}}_{0.7}{\hbox {Ca}}_{0.3}{\hbox {MnO}}_{3}.\) The Curie temperature increases from 251 to 288 K with increasing K amount. The maximum magnetic entropy change was found to be 2.7 J kg\(^{-1}\,{\hbox {K}}^{-1}\) at 283 K under a magnetic field change of 2 T for the \({\hbox {La}}_{0.7}{\hbox {K}}_{0.05}{\hbox {Ca}}_{0.25}{\hbox {MnO}}_{3}.\) The relative cooling powers (RCPs) in the \({\hbox {La}}_{0.7}{\hbox {K}}_{x}{\hbox {Ca}}_{0.3-x}{\hbox {MnO}}_{3}\) (\(x=0,\) 0.05, 0.1) samples were calculated to be 103, 133 and 88 J kg\(^{-1},\) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Krichene, M. Bourouina, D. Venkateshwarlu, P.S. Solanki, S. Rayaprol, V. Ganesan, W. Boujelben, D.G. Kuberkar, J. Magn. Magn. Mater. 408, 116 (2016). https://doi.org/10.1016/j.jmmm.2016.02.036

    Article  CAS  Google Scholar 

  2. A. Krichene, P.S. Solanki, S. Rayaprol, V. Ganesan, W. Boujelben, D.G. Kuberkar, Ceram. Int. 41(2), 2637 (2015). https://doi.org/10.1016/j.ceramint.2014.10.163

    Article  CAS  Google Scholar 

  3. M. Balli, S. Mansouri, S. Jandl, P. Fournier, D.Z. Dimitrov, Solid State Commun. 239, 9 (2016). https://doi.org/10.1016/j.ssc.2016.04.002

    Article  CAS  Google Scholar 

  4. G. Akca, S.K. Cetin, A. Ekicibil, Ceram. Int. 43(17), 15811 (2017). https://doi.org/10.1016/j.ceramint.2017.08.150

    Article  CAS  Google Scholar 

  5. I. Sfifir, A. Ezaami, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Ceram. Int. 43(12), 8784 (2017). https://doi.org/10.1016/j.ceramint.2017.04.009

    Article  CAS  Google Scholar 

  6. A. Elghoul, A. Krichene, N.C. Boudjada, W. Boujelben, Ceram. Int. 44(11), 12723 (2018). https://doi.org/10.1016/j.ceramint.2018.04.075

    Article  CAS  Google Scholar 

  7. U. Khachar, P.S. Solanki, R.J. Choudhary, D.M. Phase, V. Ganesan, D.G. Kuberkar, Solid State Commun. 152(1), 34 (2012). https://doi.org/10.1016/j.ssc.2011.10.013

    Article  CAS  Google Scholar 

  8. U. Khachar, P.S. Solanki, R.J. Choudhary, D.M. Phase, D.G. Kuberkar, J. Mater. Sci. Technol. 29(10), 989 (2013). https://doi.org/10.1016/j.jmst.2013.05.011

    Article  CAS  Google Scholar 

  9. D. Dhruv, Z. Joshi, S. Kansara, M.J. Keshvani, D.D. Pandya, K. Asokan, P.S. Solanki, D.G. Kuberkar, N.A. Shah, Adv. Sci. Lett. 22(4), 843 (2016). https://doi.org/10.1166/asl.2016.6958

    Article  Google Scholar 

  10. M. Gilleo, Acta Crystallogr. 10, 161 (1957)

    Article  CAS  Google Scholar 

  11. H. Yakel, W. Koehler, E. Bertaut, E. Forrat, Acta Crystallogr. 16, 957 (1963)

    Article  CAS  Google Scholar 

  12. S. Dong, R. Yu, S. Yunoki, J.M. Liu, E. Dagotto, Phys. Rev. B 78, 064414 (2008). https://doi.org/10.1103/PhysRevB.78.064414

    Article  CAS  Google Scholar 

  13. S. Zouari, A. Cheikh-Rouhou, P. Strobel, M. Pernet, J. Pierre, J. Alloys Compds 333(1–2), 21 (2002). https://doi.org/10.1016/S0925-8388(01)01704-2

    Article  CAS  Google Scholar 

  14. E.O. Wollan, W.C. Koehler, Phys. Rev. 100(2), 545 (1955). https://doi.org/10.1103/PhysRev.100.545

    Article  CAS  Google Scholar 

  15. J.M.D. Coey, M. Viret, S. von Molnr, Adv. Phys. 48(2), 167 (1999). https://doi.org/10.1080/000187399243455

    Article  CAS  Google Scholar 

  16. Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, D. Feng, Phys. Rev. Lett. 78(6), 1142 (1997). https://doi.org/10.1103/PhysRevLett.78.1142

    Article  CAS  Google Scholar 

  17. Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zhang, J. Tang, L. Liu, D.W. Liu, Q.H. Zheng, L. Chen, Z.H. Fang, S. Liu, C.Q. Tang, Solid State Commun. 127(8), 567 (2003). https://doi.org/10.1016/S0038-1098(03)00506-4

    Article  CAS  Google Scholar 

  18. R. Mnassri, A. Cheikhrouhou, J. Supercond. Nov. Magn. 27(2), 421 (2014). https://doi.org/10.1007/s10948-013-2278-1

    Article  CAS  Google Scholar 

  19. A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, Y. Tokura, Nature 373(6513), 407 (1995). https://doi.org/10.1038/373407a0

    Article  CAS  Google Scholar 

  20. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308(2), 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025

    Article  CAS  Google Scholar 

  21. S. Hcini, S. Zemni, A. Triki, H. Rahmouni, M. Boudard, J. Alloys Compds 509(5), 1394 (2011). https://doi.org/10.1016/j.jallcom.2010.10.190

    Article  CAS  Google Scholar 

  22. J. Rodriguez-Carvajal, Physica B 192(12), 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  CAS  Google Scholar 

  23. S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Ceram. Int. 40(10), 1604116050 (2014). https://doi.org/10.1016/j.ceramint.2014.07.140

    Article  CAS  Google Scholar 

  24. J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993)

    Google Scholar 

  25. A. Arrott, Phys. Rev. 108(6), 1394 (1957). https://doi.org/10.1103/PhysRev.108.1394

    Article  CAS  Google Scholar 

  26. B.K. Banerjee, Phys. Lett. 12(1), 16 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  Google Scholar 

  27. M. Foldeaki, R. Chahine, T.K. Bose, J. Appl. Phys. 77(7), 3528 (1995). https://doi.org/10.1063/1.358648

    Article  Google Scholar 

  28. X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu, G.H. Wu, Appl. Phys. Lett. 77(19), 3072 (2000). https://doi.org/10.1063/1.1323993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Commission of Scientific Research Projects of Uludag University [Project Number OUAP(F)-2018/4] and the Commission of Scientific Research Projects of Pamukkale University [Project Number 2018HZDP025].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atakan Tekgül.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekgül, A., Ünlü, C.G., Sarlar, K. et al. K dopant effect on \({\hbox {La}}_{0.7}{\hbox {K}}_{x} {\hbox {Ca}}_{0.3-x}{\hbox {MnO}}_{3}\) (\(x=0,\) 0.05, 0.1) perovskite compounds: the structural, magnetic and magnetocaloric properties. J Mater Sci: Mater Electron 31, 6875–6882 (2020). https://doi.org/10.1007/s10854-020-03249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03249-2

Navigation