Skip to main content
Log in

Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) buffer layer that decouples the absorber layer and window layer in thin-film solar cells was synthesized by two different chemical bath deposition (CBD) techniques with varying deposition parameters. X-ray diffraction (XRD) revealed that the CdS thin film crystallizes in a stable hexagonal wurtzite structure having a preferential orientation along (002) reflection plane with a crystallite size varying from 20 to 40 nm. First longitudinal optical phonon mode was identified at Raman shift of 305 cm−1. Uniform, granular, continuous, and smooth surface with an average grain sizes (< 100 nm) as well as small roughness (< 9 nm) was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The symmetric composition of cadmium and sulfur along with larger grains (20 nm) was observed at higher deposition temperatures and times. The optical band gap of CdS samples obtained from process one was in the range of 2.3–2.35 eV, while the band gap by the second CBD process lay in between 2.49 and 2.65 eV, showing the most stable compound of CdS. The presence of a green emission band in photoluminescence spectra (PL) demonstrated that the CdS material has better crystallinity with minimum defect density. Hall effect studies revealed the n-type conductivity of CdS thin films with a carrier concentration values in the order of 1016 cm−3. Furthermore, CdS thin films fabricated by CBD process exposed better quality that might be more suitable material as a buffer layer for thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, ( Wiley, Hoboken, 2011), pp. 11–41

  2. A. Fahrenbruch, R. Bube, Fundamentals of Solar cells: Photovoltaic Solar Energy Conversion, (Elsevier, Amsterdam, 1983) pp. 1–23

  3. V. Steinbach, F.W. Wellmer, Sustainability 2, 1408 (2010)

    Google Scholar 

  4. A. Jager-Waldau, Snapshot of photovoltaics. EPJ Photovolt. 9, 6 (2018)

    Google Scholar 

  5. H. Neumann, Sol. Cells 16, 317 (1986)

    CAS  Google Scholar 

  6. B. Dimmler, CIGS and CdTe based thin film PV modules, (38th IEEE Photovoltaic Specialists Conference, 2012), pp. 002494–002499

  7. G. Regmi, M. Rohini, P. Reyes-Figueroa, A. Maldonado, María De La Luz Olvera, S. Velumani, J. Mater. Sci. 29, 15682 (2018)

    CAS  Google Scholar 

  8. M.M. de Wild-Scholten, Sol. Energy Mater. Sol. Cells 119, 296 (2013)

    Google Scholar 

  9. K.K. Solar, Frontier, Solar Frontier achieves world record thin-film solar cell efficiency of 22.9%, press release, (2017)

  10. C. Heske, D. Eich, R. Fink, E. Umbach, T. van Buuren, C. Bostedt, L.J. Terminello, S. Kakar, M.M. Grush, T.A. Callcott, F.J. Himpsel, D.L. Ederer, R.C.C. Perera, W. Riedl, F. Karg, Appl. Phys. Lett. 74, 1451 (1999)

    CAS  Google Scholar 

  11. R.H. Bube, Photoelectronic Properties of Semiconductors, (Cambridge University Press, Cambridge, 1992) pp. 1–29

  12. J. Sterner, J. Malmstrom, L. Stolt, J. Malmström, L. Stolt, Prog. Photovolt. Res. Appl. 13, 179 (2005)

    CAS  Google Scholar 

  13. C. Platzer-Bjorkman, J. Kessler, L. Stolt, In 3rd World Conf. Photovolt. Energy Convers. 1, 461 (2003)

    Google Scholar 

  14. A. Ennaoui, M. Weber, R. Scheer, H.J. Lewerenz, Sol. Energy Mater. Sol. Cells 54, 277 (1998)

    CAS  Google Scholar 

  15. A.M. Chaparro, C. Maffiotte, M.T. Gutiérrez, J. Herrero, J. Klaer, K. Siemer, D. Bräuni, Thin Solid Films 387, 104 (2001)

    CAS  Google Scholar 

  16. G. Gordillo, C. Calderón, Sol. Energy Mater. Sol. Cells 77, 163 (2003)

    CAS  Google Scholar 

  17. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot, Prog. Photovolt. Res. Appl. 11, 437 (2003)

    CAS  Google Scholar 

  18. P. Genevee, A. Darga, C. Longeaud, D. Lincot, F. Donsanti, J. Renew. Sustain. Energy 7, 013116 (2015)

    Google Scholar 

  19. R.A. Devi, M. Latha, S. Velumani, G. Oza, P. Reyes-Figueroa, M. Rohini, J. Nanosci. Nanotechnol. 15, 8434 (2015)

    CAS  Google Scholar 

  20. P.K. Nair, J. Campos, M.T.S. Nair, Semicod. Sci. Technol. 3, 134 (1998)

    Google Scholar 

  21. A. Dandia, V. Parewa, K.S. Rathore, Catal. Commun. 28, 90 (2012)

    CAS  Google Scholar 

  22. N. Zhu, A. Zhang, P. He, Y. Fang, Analyst 128, 260 (2003)

    CAS  Google Scholar 

  23. S.D. Naik, S.K. Apte, R.S. Sonawane, U.P. Mulik, Pramana 65, 707 (2005)

    CAS  Google Scholar 

  24. R. Agarwal, C.J. Barrelet, C.M. Lieber, Nano Lett. 5, 917 (2005)

    CAS  Google Scholar 

  25. J.B. Seon, S. Lee, J.M. Kim, H.D. Jeong, Chem. Mater. 21, 604 (2009)

    CAS  Google Scholar 

  26. J. Zhang, D. Li, R. Chen, Q. Xiong, Nature 493, 504 (2013)

    CAS  Google Scholar 

  27. A.A. Yadav, E.U. Masumdar, J. Alloys Compd. 509, 5394 (2011)

    CAS  Google Scholar 

  28. X. Mathew, J.P. Enriquez, A. Romeo, A.N. Tiwari, Sol. Energy 77, 831 (2004)

    CAS  Google Scholar 

  29. A. Ashok, J.S. Narro-Rios, O. Nwakanma, G. Regmi, F.A. Pulgarin-Agudelo, S. Velumani, 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) IEEE 1, (2018)

  30. G. Regmi, J.S. Narro-Rios, O. Nwakanma, A. Ashok, F.A. Pulgarin-Agudelo, S. Velumani 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) IEEE 1, (2018)

  31. B.J. Babu, S. Velumani, B.J. Simonds, R.K. Ahrenkiel, A. Kassiba, R. Asomoza, Mater. Sci. Semicond. Process 37, 37 (2015)

    CAS  Google Scholar 

  32. B. Vidhya, S. Velumani, R. Asomoza, J. Nanopart. Res. 13, 3033 (2011)

    CAS  Google Scholar 

  33. M. Latha, R.A. Devi, S. Velumani, G. Oza, P. Reyes-Figueroa, M. Rohini, J. Yi, J. Nanosci. Nanotechnol. 15, 8388 (2015)

    CAS  Google Scholar 

  34. M. Rohini, P. Reyes, S. Velumani, M. Latha, I. Becerril-Juarez, R. Asomoza, Mater. Sci. Semicond. Process. 37, 151 (2015)

    CAS  Google Scholar 

  35. B.J. Babu, S. Velumani, A. Kassiba, R. Asomoza, J.A. Chavez-Carvayar, J. Yi, Mater. Chem. Phys. 162, 59 (2015)

    CAS  Google Scholar 

  36. M. Chandramohan, S. Velumani, T. Venkatachalam, Mater. Sci. Eng. B 174, 205 (2010)

    CAS  Google Scholar 

  37. H. Moualkia, S. Hariech, M.S. Aida, N. Attaf, E.L. Laifa, J. Phys. D 42, 135404 (2009)

    Google Scholar 

  38. P. Reyes, S. Velumani, Mater. Sci. Eng. B 177, 1452 (2012)

    CAS  Google Scholar 

  39. T. Nakada, M. Mizutani, Y. Hagiwara, A. kunioka, Sol. Energy Mater. Sol. Cells. 49, 249 (1997)

    Google Scholar 

  40. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Phys. Status Sol. Rapid Res. Lett. 9, 28 (2015)

    CAS  Google Scholar 

  41. C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, J. Appl. Phys. 79, 9105 (1996)

    CAS  Google Scholar 

  42. B.S. Moon, J.H. Lee, H. Jung, Thin Solid Films 511, 299 (2006)

    Google Scholar 

  43. P.P. Sahay, R.K. Nath, S.Tewari, Cryst. Res. Technol. 42, 275 (2007)

    CAS  Google Scholar 

  44. K. Sivaramamoorthy, S.A. Bahadur, M. Kottaisamy, K.R. Murali, J. Alloys Compd. 503, 170 (2010)

    CAS  Google Scholar 

  45. D.W. Niles, H. Hochst, Phys. Rev. B 41, 12710 (1990)

    CAS  Google Scholar 

  46. N.V. Hullavarad, S.S. Hullavard, Photonics Nanostruct. Fundam. Appl. 5, 156 (2007)

    Google Scholar 

  47. J. Nishino, S. Chatani, Y. Uotani, Y. Nosaka, J. Electroanal. Chem. 473, 217 (1999)

    CAS  Google Scholar 

  48. E. Fatas, R. Duo, P. Herrasti, F. Arjona, E. Garcia-Camarero, J. Electrochem. Soc. 131, 2243 (1984)

    CAS  Google Scholar 

  49. S.A. Al-Kuhaimi, Vacuum, 51, 349 (1998)

  50. J. Patel, F. Mighri, A. Ajji, D. Tiwari, T.K. Chaudhari, Appl. Phys. A 117, 1791 (2014)

    CAS  Google Scholar 

  51. M.A. Olopade, A.M. Awobode, O.E. Awe, T.I. Imalerio, Int. J. Res. Rev. Appl. Sci. 15, 120 (2013)

    CAS  Google Scholar 

  52. A.A. Yadav, M.A. Barote, E.U. Masumdar, Solid State Sci. 12, 1173 (2010)

    CAS  Google Scholar 

  53. A. Ashour, Turk. J. Phys. 27, 551 (2003)

    CAS  Google Scholar 

  54. H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka, H. Sonumura, Sol. Energy Mater. Sol. Cells 75, 219 (2003)

    CAS  Google Scholar 

  55. H.M. Pathan, C.D. Lokhande, Bull. Mater. Sci. 27, 85 (2004)

    CAS  Google Scholar 

  56. Z. Rabeel, M. Abbas, M. Basit, N.A. Shah, I. Ahmad, J. Adv. Nanomater. 2, 113 (2017)

    Google Scholar 

  57. J.P. Enriquez, X. Mathew, Sol. Energy Mater. Sol. Cells 76, 313 (2003)

    CAS  Google Scholar 

  58. R. Hunger, M.V. Lebedev, K. Sakurai, T. Schulmeyer, T. Mayer, A. S. Klein, W. Niki, Jaegermann, Thin Solid Films 515, 6112 (2007)

  59. D.C. Reynolds, G. Leies, L.L. Antes, R.E. Marburger, Phys. Rev. 96, 533 (1954)

    CAS  Google Scholar 

  60. P.K. Nair, M.T.S. Nair, V.M. Garcia, O.L. Arenas, Y. Pena, A. Castillo, I.T. Ayala, Sol. Energy Mater. Sol. Cells 52, 313 (1998)

    CAS  Google Scholar 

  61. J. Emerson-Reynolds, J. Chem. Soc. 45, 162 (1884)

  62. H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Thin Solid Films 516, 7306 (2008)

    CAS  Google Scholar 

  63. F. Ouachtari, A. Rmili, B. Elidrissi, A. Bouaoud, H. Erguig, P. Elies, J. Mod. Phys. 2, 1073 (2011)

    CAS  Google Scholar 

  64. G. Hodes, Chemical Solution Deposition of Semiconductor Films (CRC Press, Boca Raton, 2002), pp. 1–14

    Google Scholar 

  65. A.A. Uritskaya, G.A. Kitaev, N.S. Belova, RusS. J. Appl. Chem. 75, 846 (2002)

    CAS  Google Scholar 

  66. N.G. Dhere, D.L. Waterhouse, K.B. Sundaram, O. Melendez, N.R. Parikh, B. Patnaik, J. Mater. Sci. 6, 52 (1995)

    CAS  Google Scholar 

  67. S. Hariech, M.S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert, J. Semicond. 39, 034004 (2018)

    Google Scholar 

  68. E. Çetinörgü, C. Gümüş, R. Esen, Thin Solid Films 515, 1688 (2006)

    Google Scholar 

  69. L. Wenyi, C. Xun, C. Qiulong, Z. Zhibin, Mater. Lett. 59, 1 (2005)

    Google Scholar 

  70. M. Cao, Y. Sun, J. WU, X. Chen, N. Dai, J. Alloys Compd. 508, 297 (2010)

    CAS  Google Scholar 

  71. O. Vigil-Galán, F.A. Pulgarín, F. Cruz-Gandarilla, M. Courel, G. Villarreal-Ruiz, Y. Sánchez, D. Jiménez-Olarte, Mater. Des. 99, 254 (2016)

    Google Scholar 

  72. D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann, A.N. Tiwari, Thin Solid Films 481, 118 (2005)

    Google Scholar 

  73. K. Orgassa, U. Rau, Q. Nguyen, H.W. Schock, J.H. Werner, Prog. Photovolt. Res. Appl. 10, 457 (2002)

    CAS  Google Scholar 

  74. F. Lisco, P.M. Kaminski, A. Abbas, K. Bass, J.W. Bowers, G. Claudio, M. Losurdo, J.M. Walls, J. Thin Solid Films 582, 323 (2015)

    CAS  Google Scholar 

  75. K.S. Ramaiah, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, A.K. Bhatnagar, Mater. Chem. Phys. 68, 22 (2001)

    CAS  Google Scholar 

  76. A.J. Khimani, S.H. Chaki, T.J. Malek, J.P. Tailor, S.M. Chauhan, M.P. Deshpande, Mater. Res. Express 5, 036406 (2018)

    Google Scholar 

  77. R. Sathishkumar, E. Devakirubai, A. David, S. Tamilselvan, S. Nithiyanantham, Mater. Focus 6, 41 (2017)

    CAS  Google Scholar 

  78. J. Trajić, M. Gilić, N. Romčević, M. Romčević, G. Stanišić, B. Hadžić, Sci. Sinter. 47, 145 (2015)

    Google Scholar 

  79. J.H. Kwon, J.S. Ahn, H. Yang, Curr. Appl. Phys. 13, 84 (2013)

    Google Scholar 

  80. S.R. Meher, D.K. Kaushik, A. Subrahmanyam, J. Mater. Sci. Mater. Electron. 28, 6033 (2017)

    CAS  Google Scholar 

  81. S. Aksay, M. Polat, T. Ozer, S. Kose, G. Gurbuz, Appl. Surf. Sci. 257, 10072 (2011)

    CAS  Google Scholar 

  82. S. Aksay, A Appl. Sci. Eng. 19, 1013 (2018)

    Google Scholar 

  83. C.C. Bijumon, V.S. Kumar, Int. J. Phys. Res. 6, 31 (2016)

    Google Scholar 

  84. M. Oztas, M. Bedir, M.Y. Haciibrahim, Y. Ozdemir, Nanomed. Nanotechnol. 3, 000130 (2018)

    CAS  Google Scholar 

  85. M.A. Martınez, C. Guillen, J. Herrero, Appl. Surf. Sci. 136, 8 (1998)

    Google Scholar 

  86. A.A. Prema, R.J. Xavier, P.A. Sahayaraj, C. Pragathiswaran, Der. Pharma Chem. 8, 96 (2016)

    CAS  Google Scholar 

  87. K.K. Nanda, S.N. Sahu, Appl. Surface Sci. 119, 50 (1997)

    CAS  Google Scholar 

  88. E. Yücel, N. Güler, Y. Yücel, J. Alloys Compd. 589, 207 (2014)

    Google Scholar 

  89. S. Kahraman, H.M. Çakmak, S. Çetinkaya, H.A. Çetinkara, H.S. Güder, J. Phys. Chem. Solids 74, 565 (2013)

    CAS  Google Scholar 

  90. H. Moualkia, S. Hariech, M.S. Aida, N. Attaf, E.L. Aifa, J. Phys. D 42, 135404 (2009)

  91. H. Fritzsche, Sol. Energy Mater. 3, 447 (1980)

    CAS  Google Scholar 

  92. H. Metin, R. Esen, J. Cryst. Growth 258, 141 (2003)

    CAS  Google Scholar 

  93. A.S. Lahewil, Y. Al-Douri, U. Hashim, N.M. Ahmed, Sol. Energy 86, 3234 (2012)

    CAS  Google Scholar 

  94. A. Palafox, G. Romero-Paredes, A. Maldonado, R. Asomoza, D.R. Acosta, J. Palacios-Go ́mez, Solar Energy Mater. Sol. Cells 55, 31 (1998)

    CAS  Google Scholar 

  95. B.A. Kulp, R.H. Kelley, J. Appl. Phys. 31, 1057 (1960)

    CAS  Google Scholar 

  96. H. Ariza-Calderon, R. Lozada-Morales, O. Zelaya-Angel, J.G. Mendoza-Alvarez, J. Vac. Sci. Technol. A 14, 2480 (1996)

    CAS  Google Scholar 

  97. J. Aguilar-Hernandez, G. Contreras-Puentes, A. Morales-Acevedo, O. Vigil-Galan, Semicond. Sci. Technol. 18, 111 (2003)

    CAS  Google Scholar 

  98. F. Gemain, I. Robin, S. Renet, Phys. Status Solid 9, 1740 (2012)

    CAS  Google Scholar 

  99. P.S. Suryavanshi, C.J. Panchal, J. Nano Electron. Phys. 10, 02012 (2018)

    Google Scholar 

  100. R. Hill, Solid State Electron. Devices 2, 49 (1978)

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support from the project, Consejo Nacional de Ciencia y Tecnología-Secretaría de Energía (CONACyT—SENER)—263043. The authors A. Ashok and G. Regmi would like to thank CONACyT for the doctoral scholarship. We are also thankful to Jaime Vega Perez, Eduardo Pérez Garduño, Miguel A. Avendaño Ibarra, Norma Iris Gonzalez Garcia, Miguel Galvan Arellano, Francisco Alvarado Cesar, and Adolfo Tavira Fuentes from section of solid-state electronics of Centro de Investigacion y De Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV-IPN) for their technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Velumani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok, A., Regmi, G., Romero-Núñez, A. et al. Comparative studies of CdS thin films by chemical bath deposition techniques as a buffer layer for solar cell applications. J Mater Sci: Mater Electron 31, 7499–7518 (2020). https://doi.org/10.1007/s10854-020-03024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03024-3

Navigation