Skip to main content
Log in

Solution synthesis of Al:ZnO–AgNWs–Al:ZnO flexible transparent conductive film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible films based on ZnO are usually prepared by high-cost physical methods such as sputtering and atomic layer deposition. Due to the low-temperature requirement of flexible substrate, it is difficult to synthesize flexible transparent conductive films with good conductivity using a low-cost chemical method in reality. Although the sol-combustion method can realize low-temperature chemical synthesis of a transparent conductive film, its electrical resistivity is high and cannot be applied to flexible electronic equipment. Here, we present a kind of transparent conductive composite with sandwich structure of aluminum-doped zinc oxide (AZO) as skin and silver nanowires (AgNWs) as sandwich by low-cost wet chemical methods. Since the resistivity of ZnO is not as low as that of metals. The metal layer and metal nanowires can embed between two transparent conductive layers, improving the electrical conductivity effectively. At the same time, the crystal structure and surface morphology of the film have been studied, and the influence of the concentration of silver nanowires on the surface morphology and photoelectric properties of the film has also been studied. The results show that the AZO–AgNWs–AZO composites film with AgNWs concentration of 3.6 mg/L showed the optimal optical and electrical performance. And the composites film showed excellent long-term stability and bending stability. In summary, the AZO–AgNWs–AZO sandwich structure composites have a great potential to improve flexible electronics including organic light-emitting diodes, organic solar cells and wearable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Zhou, C. Lan, R. Wei, J.C. Ho, J. Mater. Chem. C 7, 202–217 (2019)

    Article  CAS  Google Scholar 

  2. N.T. Nguyen, A. Renaud, B. Dierre, B. Bouteille, M. Wilmet, M. Dubernet, T. Uchikoshi, Bull. Chem. Soc. Jpn. 91, 1763–1774 (2018)

    Article  CAS  Google Scholar 

  3. Q. Wang, T.A. Asoh, H.J. Uyama, Bull. Chem. Soc. Jpn. 91, 1537–1539 (2018)

    Article  CAS  Google Scholar 

  4. W. Guo, Z. Xu, F. Zhang, S. Xie, H. Xu, X.Y. Liu, Adv. Funct. Mater. 26, 8855–8884 (2016)

    Article  CAS  Google Scholar 

  5. H. Kim, A.C. Gilmore, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, D. Chrisey, J. Appl. Phys. 86, 6451–6461 (1999)

    Article  CAS  Google Scholar 

  6. Z. Ma, Z. Li, K. Liu, C. Ye, V.J. Sorger, Nanophotonics 4, 198–213 (2015)

    Article  CAS  Google Scholar 

  7. M. Lokanc, R. Eggert, M. Redlinger, The availability of indium: the present, medium term, and long term (National Renewable Energy Lab, Golden, CO, 2015)

    Book  Google Scholar 

  8. J. Kennedy, P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52–58 (2016)

    Article  CAS  Google Scholar 

  9. M. Mickan, U. Helmersson, H. Rinnert, J. Ghanbaja, D. Muller, D. Horwat, Sol. Energy. Mater. Sol. C 157, 742–749 (2016)

    Article  CAS  Google Scholar 

  10. J.E. Swallow, B.A. Williamson, T.J. Whittles, M. Birkett, T.J. Featherstone, N. Peng, A. Abbott, M. Farnworth, K.J. Cheetham, P. Warren, Adv. Funct. Mater. 28, 1701900 (2018)

    Article  Google Scholar 

  11. H.Y. Chen, J.H. Ou, Mater. Lett. 228, 81–84 (2018)

    Article  CAS  Google Scholar 

  12. C.B. Jacobs, A.B. Maksov, E.S. Muckley, L. Collins, M. Mahjouri Samani, A. Ievlev, C.M. Rouleau, J.W. Moon, D.E. Graham, B.G. Sumpter, Sci. Rep. 7, 6053 (2017)

    Article  Google Scholar 

  13. O.W. Kennedy, M.L. Coke, E.R. White, M.S. Shaffer, P.A. Warburton, Mater. Lett. 212, 51–53 (2018)

    Article  CAS  Google Scholar 

  14. J. Sheng, H. Lee, S. Oh, J. Park, A.C.S. Appl, Mater. Inter. 8, 33821–33828 (2016)

    Article  CAS  Google Scholar 

  15. S. Hamrit, K. Djessas, N. Brihi, B. Viallet, K. Medjnoun, S. Grillo, Ceram. Int. 42, 16212–16219 (2016)

    Article  CAS  Google Scholar 

  16. Y. Xia, P. Wang, S. Shi, M. Zhang, G. He, J. Lv, Z. Sun, Ceram. Int. 43, 4536–4544 (2017)

    Article  CAS  Google Scholar 

  17. J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong, X. Yang, C. Li, Y. Hao, B. Cao, J. Mater. Chem. A 3, 5375–5384 (2015)

    Article  CAS  Google Scholar 

  18. J.H. Kim, J.Y. Na, S.K. Kim, Y.Z. Yoo, T.Y. Seong, J. Electron. Mater. 44, 3967–3972 (2015)

    Article  CAS  Google Scholar 

  19. Y. Wang, M. Xu, J. Li, J. Ma, X. Wang, Z. Wei, X. Chu, X. Fang, F. Jin, Surf. Coat. Technol. 330, 255–259 (2017)

    Article  CAS  Google Scholar 

  20. V. Sharma, P. Kumar, A. Kumar, K. Asokan, K. Sachdev, Sol. Energy Mater. Sol. Cells 169, 122–131 (2017)

    Article  CAS  Google Scholar 

  21. H.W. Wu, R.Y. Yang, C.M. Hsiung, C.H. Chu, Thin Solid Films 520, 7147–7152 (2012)

    Article  CAS  Google Scholar 

  22. R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci. 452, 126–133 (2015)

    Article  CAS  Google Scholar 

  23. T. Wang, H.P. Ma, J.G. Yang, J.T. Zhu, H. Zhang, J. Feng, S.J. Ding, H.L. Lu, D.W. Zhang, J. Alloys Compd. 744, 381–385 (2018)

    Article  CAS  Google Scholar 

  24. D. Sahu, S.Y. Lin, J.L. Huang, Appl. Surf. Sci. 252, 7509–7514 (2006)

    Article  CAS  Google Scholar 

  25. C. Karunakaran, V. Rajeswari, P. Gomathisankar, Solid State Sci. 13, 923–928 (2011)

    Article  CAS  Google Scholar 

  26. W. He, C. Ye, J. Mater. Sci. Technol. 31, 581–588 (2015)

    Article  CAS  Google Scholar 

  27. J. Loste, J.M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Prog Polym. Sci. 89, 133–158 (2019)

    Article  CAS  Google Scholar 

  28. P.V. Adhyapak, P. Karandikar, K. Vijayamohanan, A.A. Athawale, A. Chandwadkar, J. Mater. Lett. 58, 1168–1171 (2004)

    Article  CAS  Google Scholar 

  29. J. Tauc, Mater. Res. Bull. 3, 37–46 (1968)

    Article  CAS  Google Scholar 

  30. Y. Liu, Q. Chang, L. Huang, J. Mater. Chem. C 1, 2970–2974 (2013)

    Article  CAS  Google Scholar 

  31. A. Yildiz, S. Uzun, N. Serin, T. Serin, Scr. Mater. 113, 23–26 (2016)

    Article  CAS  Google Scholar 

  32. E. Chávez-Vargas, V.K. Jayaraman, T.V.K. Karthik, M. Olvera, J. Vega-Pérez, A. Jiménez-González, A. Maldonado, O. López-Ortega, H. Gómez-Pozos, J. Mater. Sci.-Mater. El 29, 15821–15828 (2018)

    Article  Google Scholar 

  33. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e00285 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the “111” Project of China (D17017), National Natural Science Foundation of China (21703017, 11604024), Advance Research Project of Weapon and Equipment (6140414020102), International Science and Technology Cooperation Project of Jilin Province (20190701029GH), Project of Education Department of Jilin Province (JJKH20190551KJ, JJKH20200730KJ), China Postdoctoral Science Foundation (2019M651181), Youth Fund and Technology Innovation Fund of Changchun University of science and technology (XQNJJ-2018–03, XQNJJ-2018–05, XJJLG-2018–01) and Open Foundation of Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University (130028908).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingze Xu or Jinhua Li.

Ethics declarations

Conflicts of interest:

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, M., Li, J. et al. Solution synthesis of Al:ZnO–AgNWs–Al:ZnO flexible transparent conductive film. J Mater Sci: Mater Electron 31, 4178–4183 (2020). https://doi.org/10.1007/s10854-020-02969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02969-9

Navigation