Skip to main content
Log in

Structural, optical, and magnetic properties of Co-doped ZnO nanocrystalline thin films for spintronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different compositions of Zn1−xCoxO (0 ≤ x ≤ 0.15) nanocrystalline compounds were produced in terms of ball milling method, thin films of these compounds were prepared by electron beam evaporation method. XRD pattern was utilized to study the structural properties of these films. Hexagonal wurtzite-type structure was displayed for all of the films. Using XRD pattern, the crystallite and lattice strain were calculated. The crystallite size decreases but the lattice strain's value rises up with accumulating dopants of Co. Increasing in lattice strain may be related to the increase in the concentration of lattice imperfections. The optical constants, n and k of the Zn1−xCoxO nanocrystalline films were calculated in terms of spectroscopic ellipsometry measurements in a range of 300–1100 nm. With more doping of Co, the refractive index showed an increase, as well. According to Tauc relation, the optical energy gap of the Zn1−xCoxO films was calculated and proved to be direct transition. The energy gap found to be decreased with the increasing of the Co concentration. In addition, studying the magnetic properties of Zn1−xCoxO films reveal room temperature ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma et al., Appl. Surf. Sci. 223, 62 (2004)

    Article  CAS  Google Scholar 

  2. U. Uzgür, I. Alivov, C. Liu, A. Teke, M. Reshchikov, Appl. Phys. Rev 2005(98), 041301 (2005)

    Article  Google Scholar 

  3. N.H. Nickel, E. Terukov, Zinc Oxide-A Material for Micro-and Optoelectronic Applications: Proceedings of the NATO Advanced Research Workshop on Zinc Oxide as a Material for Micro-and Optoelectronic Applications, held in St. Petersburg, Russia, from 23 to 25 June 2004, (Springer, New York, 2006).

  4. N.H. Hong, J. Sakai, N. Poirot, V. Brizé, Phys. Rev. B 73, 132404 (2006)

    Article  Google Scholar 

  5. H. Ohno, Science 951, 281 (1998)

    Google Scholar 

  6. H. Ohno, H. Munekata, T. Penney, S. von Molnar, L.L. Chang, Phys. Rev. Lett. 68, 2664 (1992)

    Article  CAS  Google Scholar 

  7. G.A. Prinz, Science 1660, 282 (1998)

    Google Scholar 

  8. H. Ohno, Science 281, 951–956 (1998)

    Article  CAS  Google Scholar 

  9. J.K. Furdyna, J. Kossut, Diluted Magnetic Semiconductors (Academic Press, Cambridge, 1988)

    Google Scholar 

  10. R.N. Aljawfi, S. Mollah, J. Magn. Magn. Mater. 323, 3126–3132 (2011)

    Article  CAS  Google Scholar 

  11. E.R. Shaaban, I. Kansal, S. Mohamed, J.M. Ferreira, Phys B 404, 3571–3576 (2009)

    Article  CAS  Google Scholar 

  12. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Nano Lett. 4, 1247–1252 (2004)

    Article  CAS  Google Scholar 

  13. J.C. Johnson, H. Yan, P. Yang, R.J. Saykally, J. Phys. Chem. B 107, 8816–8828 (2003)

    Article  CAS  Google Scholar 

  14. J. Cao, J. Wu, Mater. Sci. Eng. R 71, 35–52 (2011)

    Article  Google Scholar 

  15. E.R. Shaaban, M.N. Abd-el Salam, M. Mohamed, M.A. Abdel-Rahim, A.Y. Abdel-Latief, J. Mater. Sci. 28, 13379–13390 (2017)

    CAS  Google Scholar 

  16. N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc. 126, 9387–9398 (2004)

    Article  CAS  Google Scholar 

  17. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988–990 (2001)

    Article  CAS  Google Scholar 

  18. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addition-Weasley, London, 1978)

    Google Scholar 

  19. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  20. J. Sivasankar, P. Mallikarjana, M. Rigana Begam, N. Madhusudhana Rao, S. Kaleemulla, J. Subrahmanyam, J. Mater. Sci. 27, 2300–2304 (2016)

    CAS  Google Scholar 

  21. G. Krishnaiah, N. Madhusudhana Rao, D. Raja Reddy, B.K. Reddy, P.S. Reddy, J. Cryst. Growth 310, 26–30 (2008)

    Article  CAS  Google Scholar 

  22. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007)

    Book  Google Scholar 

  23. S.R. Elliott, The Physics and Chemistry of Solids (Wiley, Chichester, 2000)

    Google Scholar 

  24. S. Chattopadhyay, S. Dutta, A. Banerjee, D. Jana, S. Bandyopadhyay et al., Phys B 404, 1509 (2009)

    Article  CAS  Google Scholar 

  25. S. Dutta, S. Chattopadhyay, D. Jana, A. Banerjee, S. Manik, S.K. Pradhan et al., J. Appl. Phys. 100, 114328 (2006)

    Article  Google Scholar 

  26. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. Rao, Phys. Rev. B 74, 161306 (2006)

    Article  Google Scholar 

  27. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Phys. Rev. B 77, 205411 (2008)

    Article  Google Scholar 

  28. N.H. Hong, J. Sakai, V. Brizé, J. Phys. 19, 036219 (2007)

    Google Scholar 

  29. N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72, 045336 (2005)

    Article  Google Scholar 

  30. J. Coey, M. Venkatesan, C. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  CAS  Google Scholar 

  31. S. Ramachandran, J. Narayan, J. Prater, Appl. Phys. Lett. 88, 242503 (2006)

    Article  Google Scholar 

  32. S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, H. Munekata, Phys. Rev. Lett. 78, 4617–4620 (1997)

    Article  CAS  Google Scholar 

  33. E.R. Shaaban, M.M. Mahasen, M.M. Soraya, E.S. Yousef, S.A. Mahmoud, G.A. Ali, H.A. Elshaikh, J. Am. Ceram. Soc. 102, 4067–4081 (2019)

    Article  CAS  Google Scholar 

  34. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Deanship of Scientific Research at King Faisal University for financial support under Nasher Track (Grant No. 186287). In addition, the authors are grateful to Al-Azhar University for supporting with some of experimental measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL Naim, A.F., Solieman, A. & Shaaban, E.R. Structural, optical, and magnetic properties of Co-doped ZnO nanocrystalline thin films for spintronic devices. J Mater Sci: Mater Electron 31, 3613–3621 (2020). https://doi.org/10.1007/s10854-020-02916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02916-8

Navigation