Skip to main content
Log in

Sr-doped yttrium nickel oxide-based photodetectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, Sr-doped yttrium nickel oxide-based photodetectors have been fabricated. The electrical properties of diodes have been analyzed by using Cheung and Norde methods. The ideality factors, barrier heights, and series resistances of diodes have been calculated under visible light at different irradiation intensities. In addition, the photoresponse behavior of photodetectors was investigated under visible light at different irradiation intensities. The highest responsivity (R) and detectivity (D*) were calculated as 25.34 mA/W and 7 × 84 1011 Jones, respectively. These results suggest that the photodetectors can be used optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.C. Eng, S. Song, B. Ping, Nanophotonics 4, 277–302 (2015)

    CAS  Google Scholar 

  2. M. Salvato, M. Scagliotti, M. De Crescenzi, M. Boscardin, C. Attanasio, G. Avallone, C. Cirillo, P. Prosposito, F. De Matteis, R. Messi, P. Castrucci, Sens. Actuators A 292, 71–76 (2019)

    CAS  Google Scholar 

  3. R.A. Yotter, D.M. Wilson, IEEE Sens. J. 3, 288–303 (2003)

    CAS  Google Scholar 

  4. D. Renker, Nucl. Instrum. Methods Phys. Res. Sect. A 571, 1–6 (2007)

    CAS  Google Scholar 

  5. G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University Press, Cambridge, 2009), pp. 291–293

    Google Scholar 

  6. B. Liu, C. Zhao, X. Chen, L. Zhang, Y. Li, H. Yan, Y. Zhang, Superlattices Microstruct. 130, 87–92 (2019)

    CAS  Google Scholar 

  7. F. Khosravi-Nejad, M. Teimouri, S. Jafari Marandi, M. Shariati, J. Cryst. Growth 522, 214–220 (2019)

    CAS  Google Scholar 

  8. L. Li, C. Wang, C. Wang, S. Tong, Y. Zhao, H. Xia, J. Shi, J. Shen, H. Xie, X. Liu, D. Niu, J. Yang, H. Huang, S. Xiao, J. He, Y. Gao, Org. Electron. 65, 162–169 (2019)

    CAS  Google Scholar 

  9. S. Abbas, D.-K. Ban, J. Kim, Sens. Actuators A 293, 215–221 (2019)

    CAS  Google Scholar 

  10. Y. Zhang, S. Sasaki, T. Odagiri, M. Izumi, Phys. Rev. B 74, 214429 (2006)

    Google Scholar 

  11. C.L. Fleck, G. Balakrishnan, M.R. Lees, J. Mater. Chem. 21, 1212–1217 (2011)

    CAS  Google Scholar 

  12. A.K. Kundu, K. Ramesha, R. Seshadri, C.N.R. Rao, J. Phys. 16, 7955 (2004)

    CAS  Google Scholar 

  13. P.A. Sheena, H. Hitha, A. Sreedevi, T. Varghese, Mater. Chem. Phys. 229, 412–420 (2019)

    CAS  Google Scholar 

  14. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, G. Lu, Mater. Lett. 68, 168–170 (2012)

    CAS  Google Scholar 

  15. X. Wan, M. Yuan, S. Tie, S. Lan, Appl. Surf. Sci. 277, 40–46 (2013)

    CAS  Google Scholar 

  16. M.P. Proenca, C.T. Sousa, A.M. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J.P. Araujo, Phys. Chem. Chem. Phys. 13, 9561–9567 (2011)

    CAS  Google Scholar 

  17. F. Li, H. Chen, C. Wang, K. Hu, J. Electroanal. Chem. 531, 53–60 (2002)

    CAS  Google Scholar 

  18. A. Nattestad, M. Ferguson, R. Kerr, Y.-B. Cheng, U. Bach, Nanotechnology 19, 295304 (2008)

    Google Scholar 

  19. M. Soylu, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, Microelectron. Eng. 202, 51–59 (2018)

    CAS  Google Scholar 

  20. K. Zhang, R. Ran, L. Ge, Z. Shao, W. Jin, N. Xu, J. Alloys Compd. 474, 477–483 (2009)

    CAS  Google Scholar 

  21. M. Yalcin, D. Ozmen, F. Yakuphanoglu, J. Alloys Compd. 796, 243–254 (2019)

    CAS  Google Scholar 

  22. M. Okutan, F. Yakuphanoglu, Microelectron. Eng. 85, 646–653 (2008)

    CAS  Google Scholar 

  23. M. Sukumar, L.J. Kennedy, J.J. Vijaya, B. Al-Najar, M. Bououdina, J. Magn. Magn. Mater. 465, 48–57 (2018)

    CAS  Google Scholar 

  24. P. Köç, S. Tekmen, A. Baltakesmez, S. Tüzemen, K. Meral, Y. Onganer, AIP Adv. 3, 122107 (2013)

    Google Scholar 

  25. S.K. Gautam, A. Das, R.G. Singh, V.V.S. Kumar, F. Singh, J. Appl. Phys. 120, 214502 (2016)

    Google Scholar 

  26. J.-W. Kim, T.-J. Jung, S.-M. Yoon, J. Alloys Compd. 771, 658–663 (2019)

    CAS  Google Scholar 

  27. D. Ozmen, M. Yalcin, F. Yakuphanoglu, Silicon 1, 1–9 (2019)

    Google Scholar 

  28. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85–87 (1986)

    CAS  Google Scholar 

  29. V. Janardhanam, H.-J. Yun, I. Jyothi, J. Lee, H. Hong, V. Rajagopal Reddy, C.-J. Choi, J. Alloys Compd. 637, 84–89 (2015)

    CAS  Google Scholar 

  30. M. Yıldırım, J. Alloys Compd. 773, 890–904 (2019)

    Google Scholar 

  31. R. Tung, A. Levi, J. Sullivan, F. Schrey, Phys. Rev. Lett. 66, 72–75 (1991)

    CAS  Google Scholar 

  32. F. Yakuphanoglu, J. Alloys Compd. 494, 451–455 (2010)

    CAS  Google Scholar 

  33. E. Elgazzar, M. Ozdemir, H. Usta, A.A. Al-Ghamdi, A. Dere, F. El-Tantawy, F. Yakuphanoglu, Synth. Metals 210, 288–296 (2015)

    CAS  Google Scholar 

  34. İ. Orak, A. Turut, M. Toprak, Synth. Metals 200, 66–73 (2015)

    CAS  Google Scholar 

  35. A. Mekki, R.O. Ocaya, A. Dere, A.A. Al-Ghamdi, K. Harrabi, F. Yakuphanoglu, Synth. Metals 213, 47–56 (2016)

    CAS  Google Scholar 

  36. F. Yakuphanoglu, S. Okur, Microelectron. Eng. 87, 30–34 (2010)

    CAS  Google Scholar 

  37. M. Cavas, J. Phys. Chem. Solids 74, 892–895 (2013)

    CAS  Google Scholar 

  38. N. Aslan, M.M. Koç, A. Dere, B. Arif, M. Erkovan, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Mol. Struct. 1155, 813–818 (2018)

    CAS  Google Scholar 

  39. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, Appl. Phys. Lett. 93, 351 (2008)

    Google Scholar 

  40. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Nat. Photon. 7, 883 (2013)

    CAS  Google Scholar 

  41. T. Mueller, F. Xia, P. Avouris, Nat. Photon. 4, 297 (2010)

    CAS  Google Scholar 

  42. L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.-T. Lee, Adv. Funct. Mater. 25, 2910–2919 (2015)

    CAS  Google Scholar 

  43. M. Moun, M. Kumar, M. Garg, R. Pathak, R. Singh, Sci. Rep. 8, 11799 (2018)

    Google Scholar 

  44. X. Gong, M. Tong, Y. Xia, W. Cai, J.S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, A.J. Heeger, Science 325, 1665–1667 (2009)

    CAS  Google Scholar 

  45. M.S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi, W.J. Yoo, ACS Nano 8, 9332–9340 (2014)

    CAS  Google Scholar 

  46. R.K. Gupta, F. Yakuphanoglu, Sol Energy 86, 1539–1545 (2012)

    CAS  Google Scholar 

  47. F. Yakuphanoglu, Sens. Actuators A 141, 383–389 (2008)

    CAS  Google Scholar 

  48. F. Yakuphanoglu, W.A. Farooq, Mater. Sci. Semicond. Process. 14, 207–211 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Yalcin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalcin, M., Ozmen, D. & Yakuphanoglu, F. Sr-doped yttrium nickel oxide-based photodetectors. J Mater Sci: Mater Electron 31, 3441–3455 (2020). https://doi.org/10.1007/s10854-020-02892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02892-z

Navigation