Skip to main content

Advertisement

Log in

Chemical bath deposition of Co-doped PbS thin films for solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co-doped PbS thin films with different Co concentrations were synthesized by cost-effective chemical bath deposition technique. The main purpose of this study is to determine thin film which has the best photovoltaic efficiency by examining the photovoltaic properties of Co-doped PbS with different Co concentrations. To investigate photovoltaic properties, incident photon-to-current efficiency (IPCE) and current density (J)–voltage (V) measurements were performed. The second stage of our study is to characterize the properties of Co-doped PbS which has the best photovoltaic efficiency value. As a result of the characterization processes, the information about the crystal structure, crystallite size and energy band gap of Co-doped PbS was obtained. When the photovoltaic efficiency values obtained in the first stage of our study were taken into consideration, it was clearly observed that the Co-doped metal significantly improved the photovoltaic properties of the PbS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Horoz, O. Sahin, A. Ekinci, Synthesis of Fe alloyed PbS thin films and investigation of their photovoltaic properties. J. Mater. Sci.: Mater. Electron. 29(16), 13442–13448 (2018)

    CAS  Google Scholar 

  2. L. Protesescu et al., 5.2% efficient PbS nanocrystal Schottky solar cells. Energy Environ. Sci. 6, 3054–3059 (2013)

    Article  Google Scholar 

  3. S. Rajathi, K. Kirubavathi, K. Selvaraju, Structural, morphological, optical, and photoluminescence properties of nanocrystalline PbS thin films grown by chemical bath deposition. Arab. J. Chem. 10(8), 1167–1174 (2017)

    Article  CAS  Google Scholar 

  4. Ö. Şahin, A. Ekinci, S. Horoz, Synthesis of PbS:Mo (3%) thin film and investigation of its properties. J. Mater. Sci.: Mater. Electron. 30(8), 7600–7605 (2019)

    Google Scholar 

  5. R. Bai, S. Chaudhary, D.K. Pandya, Temperature dependent charge transport mechanisms in highly crystalline p-PbS cubic nanocrystals grown by chemical bath deposition. Mater. Sci. Semicond. Process. 75, 301–310 (2018)

    Article  CAS  Google Scholar 

  6. Y. Cao et al., The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nature Energy 1(4), 16035 (2016)

    Article  CAS  Google Scholar 

  7. I. Moreels et al., Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3(10), 3023–3030 (2009)

    Article  CAS  Google Scholar 

  8. R. Sakthi Sudar Saravanan et al., Structural, optical and electrical characterization of Mn2+ and Cd2+ doped/co-doped PbS nanocrystals. J, Alloys Compd. 627, 69–77 (2015)

    Article  CAS  Google Scholar 

  9. C. Rajashree, A. Balu, V. Nagarethinam, Properties of Cd doped PbS thin films: doping concentration effect. Surf. Eng. 31, 316–321 (2015)

    Article  CAS  Google Scholar 

  10. X. Zheng et al., Cu-doped PbS thin films with low resistivity prepared via chemical bath deposition. Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.12.077

    Article  Google Scholar 

  11. O. Moreno et al., Properties of PbS: Ni2+ nanocrystals in thin films by chemical bath deposition. ISRN Nanotechnol. (2012). https://doi.org/10.5402/2012/546027

    Article  Google Scholar 

  12. B. Touati et al., Optical, morphological and electrical studies of Zn:PbS thin films. Mater. Sci. Semicond. Process. 34, 82–87 (2015)

    Article  CAS  Google Scholar 

  13. S. Ravishankar, A.R. Balu, V.S. Nagarethinam, Effect of Gd3+ ions on the thermal behavior, optical, electrical and magnetic properties of pbs thin films. J. Electron. Mater. 47(2), 1271–1278 (2018)

    Article  CAS  Google Scholar 

  14. V. Krishnakumar, S. Govindaraj, R. Nagalakshmi, Large third-order optical nonlinearity of Mg-doped PbS/PVA freestanding nanocomposite films. J. Phys. D Appl. Phys. (2012). https://doi.org/10.1088/0022-3727/45/16/165102

    Article  Google Scholar 

  15. A. Borhade, B. Uphade, A comparative study on characterization and photocatalytic activities of Pbs and co doped Pbs nanoparticles. Chalcogenide Lett. 9, 299–306 (2012)

    CAS  Google Scholar 

  16. R. Geethu et al., Optoelectronic and thermoelectric properties in Ga doped β-PbS2 nanostructured thin films. Appl. Surf. Sci. 258, 6257–6260 (2012)

    Article  CAS  Google Scholar 

  17. R. Kumar et al., Preparation of nanocrystalline Sb doped PbS thin films and their structural, optical, and electrical characterization. Superlattices Microstruct. 75, 601–612 (2014)

    Article  CAS  Google Scholar 

  18. S. Ravishankar et al., TG–DTA analysis, structural, optical and magnetic properties of PbS thin films doped with Co2+ ions. J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8579-1

    Article  Google Scholar 

  19. F. Göde, Annealing temperature effect on the structural, optical and electrical properties of ZnS thin films. Phys. B Condens. Matter 406, 1653–1659 (2011)

    Article  Google Scholar 

  20. S. Nar, O. Sahin, S. Horoz, Determination of the optimum Co concentration in Co:Sb2S3 thin films. J. Mater. Sci.: Mater. Electron. 29(20), 17853–17858 (2018)

    CAS  Google Scholar 

  21. J. Tian et al., Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6, 23094 (2016)

    Article  CAS  Google Scholar 

  22. A. Carrillo-Castillo et al., Role of complexing agents in chemical bath deposition of lead sulfide thin films. Mater. Lett. 121, 19–21 (2014)

    Article  CAS  Google Scholar 

  23. A.N. Fouda et al., Structural and optical characterization of chemically deposited pbs thin films. Silicon 9(6), 809–816 (2017)

    Article  CAS  Google Scholar 

  24. E. Yucel, Y. Yücel, Fabrication and characterization of Sr-doped PbS thin films grown by CBD. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.09.173

    Article  Google Scholar 

  25. J.J. Valenzuela-Jáuregui et al., Optical properties of PbS thin films chemically deposited at different temperatures. Thin Solid Films 441, 104 (2003)

    Article  Google Scholar 

  26. S. Horoz et al., CdSe quantum dots synthesized by laser ablation in water and their photovoltaic applications. Appl. Phys. Lett. 101(22), 223902 (2012)

    Article  Google Scholar 

  27. Z. Mamiyev, N. Balayeva, Preparation and optical studies of PbS nanoparticles. Opt. Mater. 46, 522–525 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabit Horoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekinci, A., Şahin, Ö. & Horoz, S. Chemical bath deposition of Co-doped PbS thin films for solar cell application. J Mater Sci: Mater Electron 31, 1210–1215 (2020). https://doi.org/10.1007/s10854-019-02632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02632-y

Navigation