Skip to main content
Log in

Effect of NaCl on the microstructure and electrical properties of K0.5Na0.5NbO3 ceramics prepared by cold sintering process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

K0.5Na0.5NbO3 ceramics are considered as a potential candidate for PZT due to its excellent electrical properties and high Curie temperature. In this work, Cold sintering process (CSP) has been used in preparing the K0.5Na0.5NbO3-NaCl ceramics. Based on the experimental characterization, utilizing NaCl aqueous solutions as a transient solvent can change the grain microstructure of KNN ceramics, inhibit the volatilization of alkali metal elements, and lower the sintering temperature. As sintering at 900 °C, the electrical properties of the ceramic were Tc= 448 °C, d33= 115 pC/N, kp= 32%, and the obtained sample had an average grain size of 0.5 μm. The results indicate that CSP with NaCl aqueous solutions is an efficient method for low-temperature sintering of KNN ceramics with uniform grain size as well as good performance in electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015)

    Article  Google Scholar 

  2. E. Aksel, J.L. Jones, Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10, 1935–1954 (2010)

    Article  CAS  Google Scholar 

  3. C. Bantignies, E. Filoux, P. Mauchamp, R. Dufait, M.P. Thi, R. Rouffaud, J.M. Gregoire, F. Levassort, Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging. IEEE Int. Ultra. Sym 3, 777–780 (2013)

    Google Scholar 

  4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  5. R.X. Huang, Y.J. Zhao, D. Yan, (K0.5Na0.5)NbO3 lead-free ceramics with improved piezoelectricity and field-induced strain. Ceram. Int. 45, 1450–1454 (2019)

    Article  CAS  Google Scholar 

  6. K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016)

    Article  CAS  Google Scholar 

  7. R.X. Huang, Y.Z. Zhao, Y.J. Zhao, R.Z. Liu, H.P. Zhou, Effects of sintering temperature and alkaline elements excess on the structure and electrical properties of (K0.462Na0.48Li0.058)(1+x)NbO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 11, 1205–1209 (2011)

    Article  Google Scholar 

  8. S.J. Park, H.Y. Park, K.H. Cho, S. Nahm, H.G. Lee, D.H. Kim, B.H. Choi, Effect of CuO on the sintering temperature and piezoelectric properties of lead-free 0.95(Na0.5K0.5)NbO3-0.05CaTiO(3) ceramics. Mater. Res. Bull. 43, 3580–3586 (2008)

    Article  CAS  Google Scholar 

  9. M.R. Bafandeh, R. Gharahkhani, M.H. Abbasi, A. Saidi, J.S. Lee, H.S. Han, Improvement of piezoelectric and ferroelectric properties in (K, Na)NbO3- based ceramics via microwave sintering. J. Electroceram. 33, 128–133 (2014)

    Article  CAS  Google Scholar 

  10. R. Chaim, A. Shlayer, C. Estournes, Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J. Eur. Ceram. Soc. 29, 91–98 (2009)

    Article  CAS  Google Scholar 

  11. M. Cologna, B. Rashkova, R. Raj, Flash sintering of nanograin zirconia in < 5s at 850 °C. J. Am. Ceram. Soc. 93, 3556–3559 (2010)

    Article  CAS  Google Scholar 

  12. I.W. Chen, X.H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168–171 (2000)

    Article  CAS  Google Scholar 

  13. H.Z. Guo, J. Guo, A. Baker, C.A. Randall, Hydrothermal-assisted cold sintering process: a new guidance for low-temperature ceramic sintering. ACS Appl. Mater. Interface 8, 20909–20915 (2016)

    Article  CAS  Google Scholar 

  14. H.Z. Guo, A. Baker, J. Guo, C.A. Randall, Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS Nano 10, 10606–10614 (2016)

    Article  CAS  Google Scholar 

  15. J. Guo, S.S. Berbano, H.Z. Guo, A.L. Baker, M.T. Lanagan, C.A. Randall, Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26, 7115–7121 (2016)

    Article  CAS  Google Scholar 

  16. H. Kahari, M. Teirikangas, J. Juuti, H. Jantunen, Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics. J. Am. Ceram. Soc. 98, 687–689 (2015)

    Article  Google Scholar 

  17. H.Z. Guo, A. Baker, J. Guo, C.A. Randall, Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. J. Am. Ceram. Soc. 99, 3489–3507 (2016)

    Article  CAS  Google Scholar 

  18. L. Li, W.B. Hong, S. Yang, H. Yan, X.M. Chen, Effects of water content during cold sintering process of NaCl ceramics. J. Alloys Compd. 787, 352–357 (2019)

    Article  CAS  Google Scholar 

  19. J. Ma, H. Li, H. Wang, C. Lin, X. Wu, T. Lin, X. Zheng, X. Yu, Composition, microstructure and electrical properties of K0.5Na0.5NbO3 ceramics fabricated by cold sintering assisted sintering. J. Eur. Ceram. Soc. 39, 986–993 (2019)

    Article  CAS  Google Scholar 

  20. H.Q. Huang, J. Tang, J. Liu, Preparation of Na0.5Bi0.5TiO3 ceramics by hydrothermal-assisted cold sintering. Ceram. Int. 45, 6753–6758 (2019)

    Article  CAS  Google Scholar 

  21. D.X. Wang, H.Z. Guo, C.S. Morandi, C.A. Randall, S. Trolier-McKinstry, Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics. APL Mater. 6, 016101 (2018)

    Article  Google Scholar 

  22. O. Ozmen, C. Ozsoy-Keskinbora, E. Suvaci, Chemical stability of KNbO3, NaNbO3, and K0.5Na0.5NbO3 in aqueous medium. J. Am. Ceram. Soc. 101, 1074–1086 (2018)

    Article  CAS  Google Scholar 

  23. Y.J. Dai, X.W. Zhang, K.P. Chen, Morphotropic phase boundary and electrical properties of K1−xNaxNbO3 lead-free ceramics. Appl. Phys. Lett. 94, 042905 (2009)

    Article  Google Scholar 

  24. J. Fu, R. Zuo, Y. Xu, J.-F. Li, M. Shi, Investigations of domain switching and lattice strains in (Na, K)NbO3-based lead-free ceramics across orthorhombic-tetragonal phase boundary. J. Eur. Ceram. Soc. 37, 975–983 (2017)

    Article  CAS  Google Scholar 

  25. H.C. Thong, Q. Li, M.H. Zhang, C.L. Zhao, K.X. Huang, J.F. Li, K. Wang, Defect suppression in CaZrO3-modified (K, Na)NbO3-based lead-free piezoceramic by sintering atmosphere control. J. Am. Ceram. Soc. 101, 3393–3401 (2018)

    Article  CAS  Google Scholar 

  26. M. Feizpour, T. Ebadzadeh, D. Jenko, Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: a comparative study with a calcination temperature of 850 °C. J. Eur. Ceram. Soc. 36, 1595–1603 (2016)

    Article  CAS  Google Scholar 

  27. J.P. Ma, X.M. Chen, W.Q. Ouyang, J. Wang, H. Li, J.L. Fang, Microstructure, dielectric, and energy storage properties of BaTiO3 ceramics prepared via cold sintering. Ceram. Int. 44, 4436–4441 (2018)

    Article  CAS  Google Scholar 

  28. Y.-H. Lee, J.-H. Cho, B.-I. Kim, D.-K. Choi, Piezoelectric properties and densification based on control of volatile mass of potassium and sodium in (K0.5Na0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 47, 4620–4622 (2008)

    Article  CAS  Google Scholar 

  29. D.W. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q.L. Zhao, I.M. Reaney, Composition and temperature dependence of structure and piezoelectricity in (1−x)(K1−yNay)NbO3−x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc. 100, 627–637 (2017)

    Article  CAS  Google Scholar 

  30. L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  CAS  Google Scholar 

  31. M. Dawber, K. Rabe, J. Scott, Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005)

    Article  CAS  Google Scholar 

  32. H.C. Thong, C.L. Zhao, Z.X. Zhu, X. Chen, J.F. Li, K. Wang, The impact of chemical heterogeneity in lead-free (K, Na)NbO3 piezoelectric perovskite: ferroelectric phase coexistence. Acta Mater. 166, 551–559 (2019)

    Article  CAS  Google Scholar 

  33. C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)

    Article  CAS  Google Scholar 

  34. J.F. Li, Y.H. Zhen, B.P. Zhang, L.M. Zhang, K. Wang, Normal sintering of (K, Na)NbO3-based lead-free piezoelectric ceramics. Ceram. Int. 34, 783–786 (2008)

    Article  CAS  Google Scholar 

  35. M. Eriksson, H.X. Yan, G. Viola, H.P. Ning, D. Gruner, M. Nygren, M.J. Reece, Z.J. Shen, Ferroelectric domain structures and electrical properties of fine-grained lead-free sodium potassium niobate ceramics. J. Am. Ceram. Soc. 94, 3391–3396 (2011)

    Article  CAS  Google Scholar 

  36. L. Egerton, D.M. Dillon, Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, M., Ma, W., Guo, J. et al. Effect of NaCl on the microstructure and electrical properties of K0.5Na0.5NbO3 ceramics prepared by cold sintering process. J Mater Sci: Mater Electron 30, 21435–21443 (2019). https://doi.org/10.1007/s10854-019-02523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02523-2

Navigation