Skip to main content
Log in

Facile synthesis and color conversion of Cu-doped ZnSe quantum dots in an aqueous solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile growth-doping method in aqueous solution has been developed to synthesize Cu-doped ZnSe (ZnSe:Cu) QDs by using thioglycolic acid (TGA) as a stabilizer. The effects of the Cu doping concentration, reaction temperature and pH value on the synthesis of ZnSe:Cu QDs were investigated systematically. The as-synthesized ZnSe:Cu QDs with an excellent green emission still belong to a cubic zinc blende crystalline structure, and the average particle size is approximately 3.0 nm. The photoluminescent quantum yield (PLQY) is as high as 20%, and the exciton radiative lifetime is approximately 113.8 ns. Moreover, the patterned ZnSe:Cu QDs thin films have been successfully fabricated by using an inkjet printing method to verify the ability of the potential application to the color conversion. With the assistance of 5.5 pair distributed bragg reflector (DBR) structures, the color coordinate of the ZnSe:Cu QDs thin film excited by the blue LEDs is located at (0.2182, 0.4352) and the intensity of PL peak located at 513 nm reaches to be 45.1%. In addition, the PLQY of color conversion-based ZnSe:Cu QDs thin film is approximately 9.64%. Based on these results, ZnSe:Cu QDs are potentially useful for the fabrication of optoelectronic devices, especially QDs photoluminescence and electroluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, J. Mater. Sci. Mater. Electron. 27, 4163–4171 (2016)

    CAS  Google Scholar 

  2. J. Kugai, E. Dodo, S. Seino, T. Nakagawa, T. Okazaki, T.A. Yamamoto, J. Nanopart. Res. 62, 1–9 (2016)

    Google Scholar 

  3. X.W. Hu, Y. Qiu, X.X. Jiang, Y.L. Li, J. Mater. Sci. Mater. Electron. 29, 15983–15993 (2018)

    CAS  Google Scholar 

  4. A.R. Khezripour, D. Souri, Optik 183, 294–301 (2019)

    CAS  Google Scholar 

  5. X. Yang, C. Pu, H. Qin, S. Liu, Z. Xu, X. Peng, J. Am. Chem. Soc. 141, 2288–2298 (2019)

    CAS  Google Scholar 

  6. H.S. Chen, S.J.J. Wang, C.J. Lo, J.Y. Chi, Appl. Phys. Lett. 86, 131905 (2005)

    Google Scholar 

  7. M. Molaei, S. Pourjafari, Bull. Mater. Sci. 37, 9–13 (2014)

    CAS  Google Scholar 

  8. G. Feng, C. Yang, S. Zhou, Nano Lett. 13, 272–275 (2013)

    CAS  Google Scholar 

  9. M.Y. Chiu, C.C. Chen, J.T. Sheu, K.H. Wei, Org. Electron. 10, 769–774 (2009)

    CAS  Google Scholar 

  10. M.L. Desai, B. Deshmukh, N. Lenka, V. Haran, S. Jha, H. Basu, R.K. Singhal, P.K. Sharma, S.K. Kailasa, K.H. Kim, Spectrochim. Acta A 210, 212–221 (2019)

    CAS  Google Scholar 

  11. J. Li, Y. Tang, Z. Li, X. Ding, S. Yu, B. Yu, Nanomaterials 8, 508 (2018)

    Google Scholar 

  12. B.K.H. Yen, A. Günther, M.A. Schmidt, K.F. Jensen, M.G. Bawendi, Angew. Chem. 117, 5583–5587 (2005)

    Google Scholar 

  13. S.H. Choi, H. Song, I.K. Park, J.H. Yum, S.S. Kim, S. Lee, Y.E. Sung, J. Photochem. Photobiol. 179, 135–141 (2005)

    Google Scholar 

  14. S. Asokan, K.M. Krueger, A. Alkhawaldeh, A.R. Carreon, Z. Mu, V.L. Colvin, N.V. Mantzaris, M.S. Wong, Nanotechnology 16, 2000–2011 (2005)

    CAS  Google Scholar 

  15. S.J. Cho, D. Maysinger, M. Jain, B. Röder, S. Hackbarth, F.M. Winnik, Langmuir 23, 1974–1980 (2007)

    CAS  Google Scholar 

  16. R. Wang, Y. Wang, Q. Feng, L. Zhou, F. Gong, Y. Lan, Mater. Lett. 66, 261–263 (2012)

    Google Scholar 

  17. J. Pei, H. Zhu, X. Wang, H. Zhang, X. Yang, Anal. Chim. Acta 757, 63–68 (2012)

    CAS  Google Scholar 

  18. K. Ou, S. Wang, X. Zhang, L. Yi, J. Mater. Sci. 54, 4049–4055 (2018)

    Google Scholar 

  19. A.P. Pardo Gonzalez, H.G. Castro-Lora, L.D. López-Carreño, H.M. Martínez, N.J. Torres Salcedo, J. Phys. Chem. Solids 75, 713–725 (2014)

    CAS  Google Scholar 

  20. N.N. Hewa-Kasakarage, M. Kirsanova, A. Nemchinov, N. Schmall, P.Z. EI-Khoury, A.N. Tarnovsky, M. Zamkov, J. Am. Chem. Soc. 131, 1328–1334 (2009)

    CAS  Google Scholar 

  21. J. Mazher, S. Badwe, R. Sengar, D. Gupta, R.K. Pandey, Physica E 16, 209–213 (2003)

    CAS  Google Scholar 

  22. F. Dehghan, M. Molaei, F. Amirian, M. Karimipour, A.R. Bahador, Mater. Chem. Phys. 206, 76–84 (2018)

    CAS  Google Scholar 

  23. H. Nishimura, Y. Lin, M. Hizume, T. Taniguchi, N. Shigekawa, T. Takagi, S. Sobue, S. Kawai, E. Okuno, D. Kim, AIP Adv. 9, 025223 (2019)

    Google Scholar 

  24. X. Xue, L. Chen, C. Zhao, L. Chang, J. Mater. Sci. Mater. Electron. 29, 9184–9192 (2018)

    CAS  Google Scholar 

  25. J.F. Suyver, T. van der Beek, S.F. Wuister, J.J. Kelly, A. Meijerink, Appl. Phys. Lett. 79, 4222–4224 (2001)

    CAS  Google Scholar 

  26. S. Xu, C. Wang, Z. Wang, H. Zhang, J. Yang, Q. Xu, H. Shao, R. Li, W. Lei, Y. Cui, Nanotechnology 22, 275605 (2011)

    Google Scholar 

  27. L. Wang, L. Cao, G. Su, W. Liu, C. Xia, H. Zhou, Appl. Surf. Sci. 280, 673–678 (2013)

    CAS  Google Scholar 

  28. J. Zhang, Q. Chen, W. Zhang, S. Mei, L. He, J. Zhu, G. Chen, R. Guo, Appl. Surf. Sci. 351, 655–661 (2015)

    CAS  Google Scholar 

  29. F. Gong, L. Sun, H. Ruan, H. Cai, Mater. Express 8, 173–181 (2018)

    CAS  Google Scholar 

  30. L.C. He, Y.A. Zhang, S.L. Zhang, X.T. Zhou, Z.X. Lin, T.L. Guo, Mater. Technol. 33, 205–213 (2017)

    Google Scholar 

  31. S.L. Zhang, C.F. Lin, Y.L. Weng, L.C. He, T.L. Guo, Y.A. Zhang, X.T. Zhou, J. Mater. Sci. Mater. Electron. 29, 16805–16814 (2018)

    CAS  Google Scholar 

  32. Y.L. Weng, G.X. Chen, X.T. Zhou, Q. Yan, T.L. Guo, Y.A. Zhang, Nanotechnology 30, 085702 (2019)

    CAS  Google Scholar 

  33. Y.L. Ding, S.Z. Shen, H.D. Sun, K.N. Sun, F.T. Liu, Sens. Actuator B Chem. 203, 35–43 (2014)

    CAS  Google Scholar 

  34. D.G. Chen, R. Viswanatha, G.L. Ong, R.G. Xie, M. Balasubramaninan, X.G. Peng, J. Am. Chem. Soc. 131, 9333–9339 (2009)

    CAS  Google Scholar 

  35. D. Zhao, J.T. Li, F. Gao, C.L. Zhang, Z.K. He, RSC Adv. 4, 47005–47011 (2012)

    Google Scholar 

  36. J. Zhuang, X. Zhang, G. Wang, D. Li, W. Yang, T. Li, J. Mater. Chem. 13, 1853 (2003)

    CAS  Google Scholar 

  37. Z. Liu, A. Tang, M. Wang, C. Yang, F. Teng, J. Mater. Chem. 3, 10114–10120 (2015)

    CAS  Google Scholar 

  38. H. Ye, A. Tang, L. Huang, Y. Wang, C. Yang, Y. Hou, H. Peng, F. Zhang, F. Teng, Langmuir 29, 8728–8735 (2013)

    CAS  Google Scholar 

  39. A.W. Tang, L.X. Yi, W. Han, F. Teng, Y.S. Wang, Y.B. Hou, M.Y. Gao, Appl. Phys. Lett. 97, 033112 (2010)

    Google Scholar 

  40. L. Yang, J.G. Zhu, D.Q. Xiao, RSC Adv. 2, 8179–8188 (2012)

    CAS  Google Scholar 

  41. C. Shu, B. Huang, X. Chen, Y. Wang, X. Li, L. Ding, W. Zhong, Spectrochim. Acta A 104, 143–149 (2013)

    CAS  Google Scholar 

  42. P. Yang, N. Murase, Adv. Funct. Mater. 20, 1258–1265 (2010)

    CAS  Google Scholar 

  43. J.K. Cooper, S. Gul, S.A. Lindley, J. Yano, J.Z. Zhang, A.C.S. Appl, Mater. Interface 7, 10055–10066 (2015)

    CAS  Google Scholar 

  44. Q. Zeng, X. Kong, Y. Sun, Y. Zhang, L. Tu, J. Zhao, H. Zhang, J. Phys. Chem. C 112, 8587–8593 (2008)

    CAS  Google Scholar 

  45. X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S.V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W.W. Yu, A.L. Rogach, ACS Nano 7, 11234–11241 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61775038, 61904031), the National Natural Science Foundation of Fujian Province, China (Nos. 2017J01758, 2017J01504 and 2019J01221) and the New Century Excellent Talents Supporting Program of Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongai Zhang or Xiongtu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, S., Weng, Y. et al. Facile synthesis and color conversion of Cu-doped ZnSe quantum dots in an aqueous solution. J Mater Sci: Mater Electron 30, 21406–21415 (2019). https://doi.org/10.1007/s10854-019-02519-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02519-y

Navigation