Skip to main content
Log in

Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper demonstrated a SO2 sensor based on metal organic frameworks (MOFs)-derived titanium dioxide (TiO2)/reduced graphene oxide (rGO) nanocomposite. The MOFs-derived TiO2/rGO film was deposited on an epoxy substrate with interdigital electrodes and served as sensing material. The properties of MOFs TiO2/rGO nanocomposite in terms of microstructure, elementary composition and morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The SO2-sensing properties of the MOFs TiO2/rGO film sensor were measured at room temperature. The results illustrate that the MOFs-derived TiO2/rGO sensor exhibits a great sensing performance toward SO2 gas, including high response value, quick response/recovery time, and outstanding stability. These results render the MOFs TiO2/rGO nanocomposite an efficient sensing material for constructing high-performance SO2 sensor. Finally, the mechanism of the enhanced SO2 sensing properties was attributed to the unique nanostructure and the large specific surface area of MOFs TiO2/rGO nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.X. Zhong, Y.B. Shen, S.K. Zhao, X.X. Chen, C. Han, D.Z. Wei, P. Fang, D. Meng, SO2 sensing properties of SnO2 nanowires grown on a novel diatomite-based porous substrate. Ceram. Int. 45, 2556–2565 (2019)

    Article  Google Scholar 

  2. M.A.H. Khan, M.V. Rao, Q.L. Li, Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 19, 905 (2019)

    Article  Google Scholar 

  3. D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas sensing properties based on metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017)

    Article  Google Scholar 

  4. A. Queralto, D. Graf, R. Frohnhoven, T. Fischer, H. Vanrompay, S. Bals, A. Bartasyte, S. Mathur, LaFeO3 Nanofibers for high detection of sulfur-containing gases. ACS Sustain. Chem. Eng. 7, 6023–6032 (2019)

    Article  Google Scholar 

  5. L.B. An, X.T. Jia, Y. Liu, Adsorption of SO2 molecules on Fe-doped carbon nanotubes: the first principles study. Adsorption 25, 217–224 (2019)

    Article  Google Scholar 

  6. M.R. Tchalala, P.M. Bhatt, K.N. Chappanda, S.R. Tavares, K. Adil, Y. Belmabkhout, A. Shkurenko, A. Cadiau, N. Heymans, G.D. Weireld, G. Maurin, K.N. Salama, M. Eddaoudi, Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat. Commun. 10, 1328 (2019)

    Article  Google Scholar 

  7. Q. Zhang, H. Liu, X.J. Zhang, H.X. Xing, H.Y. Hu, H. Yao, Novel utilization of conditioner CaO for gas pollutants control during co-combustion of sludge and coal. Fuel 206, 541–545 (2017)

    Article  Google Scholar 

  8. J.N. Yun, C. Zhu, Q. Wang, Q.L. Hu, G. Yang, Catalytic conversions of atmospheric sulfur dioxide and formation of acid rain over mineral dusts: molecular oxygen as the oxygen source. Chemosphere 217, 18–25 (2019)

    Article  Google Scholar 

  9. J.N. Yun, C. Zhu, Q. Wang, Q.L. Hu, G. Yang, Strong affinity of mineral dusts for sulfur dioxide and catalytic mechanisms towards acid rain formation. Catal. Commun. 114, 79–83 (2018)

    Article  Google Scholar 

  10. K.K. Liu, C.X. Shan, H.Z. Liu, Q. Lou, D.Z. Shen, Fluorescence of ZnO/carbon mixture and application in acid rain detection. RSC Adv. 7, 1841–1846 (2017)

    Article  Google Scholar 

  11. X. Liang, T. Zhong, B. Quan, B. Wang, H. Guan, Solid-state potentiometric SO2 sensor combining NASICON with V2O5-doped TiO2 electrode. Sens. Actuators, B 134, 25–30 (2008)

    Article  Google Scholar 

  12. S. Gersen, M.V. Essen, P. Visser, M. Ahmad, A. Mokhov, A. Sepman, R. Alberts, A. Douma, H. Levinsky, Detection of H2S, SO2 and NO2 in CO2 at pressures ranging from 1 to 40 bar by using broadband absorption spectroscopy in the UV/VIS range. Energy Procedia 63, 2570–2582 (2014)

    Article  Google Scholar 

  13. Y. Uneme, S. Tamura, N. Imanaka, Sulfur dioxide gas sensor based on Zr4+ and O2− ion conducting solid electrolytes with lanthanum oxysulfate as an auxiliary sensing electrode. Sens. Actuators, B 177, 529–534 (2013)

    Article  Google Scholar 

  14. W. Yang, P. Wan, X.D. Zhou, J.M. Hu, Y.F. Guan, L. Feng, Self-assembled In2O3 truncated octahedron string and its sensing properties for formaldehyde. Sens. Actuators, B 201, 228–233 (2014)

    Article  Google Scholar 

  15. S. Zhang, P. Song, J. Li, J. Zhang, Z.X. Yang, Q. Wang, Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde. Sens. Actuators, B 241, 1130–1138 (2017)

    Article  Google Scholar 

  16. C. Zhao, H.M. Gong, W.Z. Lan, R. Ramachandran, H. Xu, S. Liu, F. Wang, Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors. Sens. Actuators, B 258, 492–500 (2018)

    Article  Google Scholar 

  17. P. Tyagi, A. Sharma, M. Tomar, V. Gupta, SnO2 thin film sensor having NiO catalyst for detection of SO2 gas with improved response characteristics. Sens. Actuators, B 248, 998–1005 (2017)

    Article  Google Scholar 

  18. R. Godbole, V.P. Godbole, S. Bhagwat, Surface morphology dependent tungsten oxide thin films as toxic gas sensor. Mater. Sci. Semicond. Process. 63, 212–219 (2017)

    Article  Google Scholar 

  19. Y.Y. Liu, X.Y. Xu, Y. Chen, Y. Zhang, X.H. Gao, P.C. Xu, X.X. Li, J.H. Fang, W.J. Wen, An integrated micro-chip with Ru/Al2O3/ZnO as sensing material for SO2 detection. Sens. Actuators, B 262, 26–34 (2018)

    Article  Google Scholar 

  20. D. Zhang, M. Pang, J. Wu, Y. Cao, Experimental and density functional theory investigation of Pt-loaded titanium dioxide/molybdenum disulfide nanohybrid for SO2 gas sensing application. New J. Chem. 43, 4900–4907 (2019)

    Article  Google Scholar 

  21. Z.Y. Qin, C. Ouyang, J. Zhang, L. Wan, S.M. Wang, C.S. Xie, D.W. Zeng, 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sens. Actuators, B 253, 1034–1042 (2017)

    Article  Google Scholar 

  22. F. Yakuphanoglu, Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method. Solid State Sci. 14, 673–676 (2012)

    Article  Google Scholar 

  23. F. Fedorov, M. Vasilkov, A. Lashkov, A. Varezhnikov, D. Fuchs, C. Kubel, M. Bruns, M. Sommer, V. Sysoev, Toward new gas-analytical multisensor chips based on titanium oxide nanotube array. Sci. Rep. 7, 9732 (2017)

    Article  Google Scholar 

  24. N. Huang, Y.N. Xie, B. Sebo, Y.M. Liu, X.H. Sun, T. Peng, W.W. Sun, C.H. Bu, S.S. Guo, X.Z. Zhao, Morphology transformations in tetrabutyl titanate–acetic acid system and sub-micron/micron hierarchical TiO2 for dye-sensitized solar cells. J. Power Sources 242, 848–854 (2013)

    Article  Google Scholar 

  25. D.Z. Zhang, J.J. Liu, C.X. Jiang, P. Li, Y. Sun, High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. Sens. Actuators, B 245, 560–567 (2017)

    Article  Google Scholar 

  26. J. Nisar, Z. Topalian, A.D. Sarkar, L. Osterlund, R. Ahuja, TiO2-based gas sensor: a possible application to SO2. ACS Appl. Mater. Interfaces. 5, 8516–8522 (2013)

    Article  Google Scholar 

  27. X. Zhang, J. Zhang, Y. Jia, P. Xiao, J. Tang, TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2. Sensors 12, 3302–3313 (2012)

    Article  Google Scholar 

  28. D. Morris, R.G. Egdell, Application of V-doped TiO2 as a sensor for detection of SO2. J. Mater. Chem. 11, 3207–3210 (2001)

    Article  Google Scholar 

  29. Z. Xiu, M.H. Alfaruqi, J. Gim, J. Song, S. Kim, T.V. Thi, P.T. Duong, J.P. Baboo, V. Mathew, J. Kim, Hierarchical porous anatase TiO2 derived from a titanium metal–organic framework as a superior anode material for lithium ion batteries. Chem. Commun. 61, 12274–12277 (2015)

    Article  Google Scholar 

  30. C.X. Li, Z.Q. Li, Q. Li, Z.W. Zhang, S.H. Dong, L.W. Yin, MOFs derived hierarchically porous TiO2 as effective chemical and physical immobilizer for sulfur species as cathodes for high-performance lithium-sulfur batteries. Electrochim. Acta 215, 689–698 (2016)

    Article  Google Scholar 

  31. X.J. Zhang, M. Wang, G. Zhu, D.S. Lia, D. Yana, T. Lu, L.K. Pan, Porous cake-like TiO2 derived from metal-organic frameworks as superior anode material for sodium ion batteries. Ceram. Int. 43, 2398–2402 (2017)

    Article  Google Scholar 

  32. D.Z. Zhang, H.Y. Chang, L. Peng, Fabrication and characterization of an ultrasensitive ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators, B 225, 233–240 (2016)

    Article  Google Scholar 

  33. D.Z. Zhang, C.X. Jiang, X.Y. Zhou, Fabrication of Pd-decorated TiO2/MoS2 ternary nanocomposite for enhanced benzene gas sensing performance at room temperature. Talanta 182, 324–332 (2018)

    Article  Google Scholar 

  34. P.Y. Wang, J.W. Lang, D.X. Liu, X.B. Yan, TiO2 embedded in carbon submicron-tablets: synthesis from a metal–organic framework precursor and application as a superior anode in lithium-ion batteries. Chem. Commun. 51, 11370–11373 (2015)

    Article  Google Scholar 

  35. H.N. Ma, L.M. Yu, X. Yuan, Y. Li, C. Li, M.L. Yin, X.H. Fan, Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J. Alloys Compd. 782, 1121–1126 (2019)

    Article  Google Scholar 

  36. K.S. Huang, C.X. Yan, K. Wang, Y.P. Zhang, Z.C. Ju, Phases hybriding and graphene-like TiO2 for high-performance Na-ion batteries. J. Alloys Compd. 687, 683–688 (2016)

    Article  Google Scholar 

  37. J.H. Kirn, W.I. Cho, H.G. Jung, S.H. Oh, K.Y. Chung, W. Cho, I.H. Oh, I.W. Nah, Anatase TiO2-reduced graphene oxide nanostructures with high-rate sodium storage performance. J. Alloys Compd. 690, 390–396 (2017)

    Article  Google Scholar 

  38. D.Z. Zhang, T. Jun, X.B. Kai, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators, B 197, 66–72 (2014)

    Article  Google Scholar 

  39. Z.L. Xiu, M.H. Alfaruqi, J. Gim, J.J. Song, S.J. Kim, T.V. Thi, P.T. Duong, J.P. Baboo, V. Mathew, J. Kim, Hierarchical porous anatase TiO2 derived from a titanium metal–organic framework as a superior anode material for lithium ion batteries. Chem. Commun. 51, 12274–12277 (2015)

    Article  Google Scholar 

  40. Z. Xiu, M.H. Alfaruqi, J. Gim, J. Song, S. Kim, P.T. Duong, J.P. Baboo, V. Mathew, J. Kim, MOF-derived mesoporous anatase TiO2 as anode material for lithium-ion batteries with high rate capability and long cycle stability. J. Alloys Compd. 674, 174–178 (2016)

    Article  Google Scholar 

  41. P. Hidalgo, R.H. Castro, D. Gouvea, A.C. Coelho, Surface segregation and consequent SO2 sensor response in SnO2-NiO. Chem. Mater. 17, 4149–4153 (2005)

    Article  Google Scholar 

  42. S. Das, S. Rana, S.M. Mursalin, P. Rana, A. Sen, Sonochemically prepared nanosized BiFeO3 as novel SO2 sensor. Sens. Actuators, B 218, 122–127 (2015)

    Article  Google Scholar 

  43. A. Marikutsa, M. Rumyantseva, A. Baranchikov, A. Gaskov, Nanocrystalline BaSnO3 as an alternative gas sensor material: surface reactivity and high sensitivity to SO2. Materials 8, 6437–6454 (2015)

    Article  Google Scholar 

  44. N. Izu, G. Hagen, D. Schonauer, U. Roder-Roith, R. Moos, Application of V2O5/WO3/TiO2 for resistive-type SO2 sensors. Sensors 11, 2982–2991 (2011)

    Article  Google Scholar 

  45. A. Stankova, X. Vilanova, J. Calderer, E. Llobet, P. Ivanov, I. Gracia, C. Cane, X. Correig, Detection of SO2 and H2S in CO2 stream by means of WO3-based micro-hotplate sensors. Sens. Actuators, B 102, 219–225 (2004)

    Article  Google Scholar 

  46. B. Bhowmik, K. Dutta, A. Hazra, P. Bhattacharyya, Low temperature acetone detection by p-type nano-titania thin film: equivalent circuit model and sensing mechanism. Solid State Electron. 99, 84–92 (2014)

    Article  Google Scholar 

  47. S.L. Bai, L. Du, J.H. Sun, R.X. Luo, D.Q. Li, A. Chen, C.C. Liu, Preparation of reduced graphene oxide/Co3O4 composites and sensing performance to toluene at low temperature. RSC Adv. 6, 60109–60116 (2016)

    Article  Google Scholar 

  48. D. Zhang, J. Liu, B. Xia, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators, B 240, 55–65 (2017)

    Article  Google Scholar 

  49. D.Z. Zhang, C.X. Jiang, J.J. Liu, Y.H. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuators, B 247, 875–882 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51777215), the Key Research & Development Plan Project of Shandong Province (Grant No. 2018GSF117002), the Fundamental Research Funds for the Central Universities of China (Grant No. 18CX07010A), the Open Funds of National Engineering Laboratory for Mobile Source Emission Control Technology (Grant No. NELMS2017B03), and the Open Fund of Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, State Oceanic Administration of China (Grant No. 201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Zhang.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wu, D., Zong, X. et al. Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure. J Mater Sci: Mater Electron 30, 11070–11078 (2019). https://doi.org/10.1007/s10854-019-01449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01449-z

Navigation