Skip to main content
Log in

On the possible conduction mechanisms in Rhenium/n-GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstarct

This study presents electrical characteristics of n-GaAs based Schottky barrier diodes (SBDs) with Rhenium (Re) rectifier contacts. The electrical characteristics of the Re/n-GaAs SBDs were investigated utilizing the forward bias current–voltage (IF–VF) data collected in temperature range of 60–400 K. The values of ideality factor (n) and zero-bias barrier height (ΦBo) were found as 9.10 and 0.11 eV for 60 K, and 1.384 and 0.624 eV for 400 K, respectively, on the basis of thermionic-emission theory. The conventional Richardson plot deviated from linearity at low temperatures and the Richardson constant value (A*) was obtained quite lower than the theoretical value for this semiconductor (8.16 A cm−2 K−2). nkT/qkT/q plot shows that the field-emission may be dominant mechanism at low temperatures as a result of tunneling via surface states since the studied n-GaAs’s doping concentration is on the order of 1018 cm−3, i.e. at high values so leads to tunneling. On the other hand, ΦBon, ΦBoq/2kT and (n−1 − 1)–q/2kT plots exhibit linearity but this linearity is observed for two temperature regions (60–160 K and 180–400 K) due the presence of double Gaussian distribution (GD) of the barrier height. Therefore, the standard deviation value was obtained from the plot of ΦBoq/2kT and it was used for modifying the conventional Richardson plot into the modified Richardson plot by which the values of mean barrier height and A* were obtained as 0.386 eV and 15.55 A cm−2 K−2 and 0.878 eV and 8.35 A cm−2 K−2 for the low and high temperature regions, respectively. As a result, IFVFT characteristics of the Re/n-GaAs SBDs were successfully elucidated by double-GD of barrier height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  2. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York and London, 1984)

    Book  Google Scholar 

  3. E.H. Rhoderick, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1978)

    Google Scholar 

  4. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4, 1589–1601 (1971)

    Article  Google Scholar 

  5. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), pp. 117–129

    Google Scholar 

  6. H.H. Güttler, J.H. Werner, Influence of barrier inhomogeneities on noise at Schottky contacts. Appl. Phys. Lett. 56, 1113–1115 (1990)

    Article  Google Scholar 

  7. R.T. Tung, J.P. Sullivan, F. Schrey, On the inhomogeneity of Schottky barriers. Mater. Sci. Eng., B 14, 266–280 (1992)

    Article  Google Scholar 

  8. R.F. Schmitsdorf, T.U. Kampen, W. Mönch, Correlation between barrier height and interface structure of Ag/Si (111) Schottky diodes. Surf. Sci. 324, 249–256 (1995)

    Article  Google Scholar 

  9. R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng., R 35, 1–138 (2001)

    Article  Google Scholar 

  10. M.K. Hudait, K.P. Venkateswarlu, S.B. Krupanidhi, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures. Solid State Electron. 45, 133–141 (2001)

    Article  Google Scholar 

  11. R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)

    Article  Google Scholar 

  12. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys. 70, 7403–7424 (1991)

    Article  Google Scholar 

  13. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers. Solid States Electron 29, 633–638 (1986)

    Article  Google Scholar 

  14. W. Mönch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities. J. Vac. Sci. Technol., B 17, 1867–1876 (1999)

    Article  Google Scholar 

  15. J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991)

    Article  Google Scholar 

  16. M.S.P. Reddy, H.S. Kang, J.H. Lee, V.R. Reddy, J.S. Jang, Electrical properties and the role of inhomogeneities at the polyvinylalcohol/n-InP Schottky barrier interface. J. Appl. Polym. Sci. 131, 39773 (2014)

    Google Scholar 

  17. V.R. Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Electrical properties and the double Gaussian distribution of inhomogeneous barrier heights in Se/n-GaN Schottky barrier diode. Superlattices Microstruct. 67, 242–255 (2014)

    Article  Google Scholar 

  18. V. Janardhanam, A.A. Kumar, V.R. Reddy, P.N. Reddy, Study of current–voltage–temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of molybdenum Schottky contacts on n-InP (100). J. Alloy. Compd. 485, 467–472 (2009)

    Article  Google Scholar 

  19. S. Alialy, A. Kaya, E. Marıl, Ş. Altındal, İ. Uslu, Electronic transport of Au/(Ca1.9Pr0.1Co4Ox)/n-Si structures analysed over a wide temperature range. Philos. Mag. 95, 1448–1461 (2015)

    Article  Google Scholar 

  20. E. Arslan, Ş. Altındal, S. Özçelik, E. Özbay, Tunneling current via dislocations in Schottky diodes on AlInN/AlN/GaN heterostructures. Semicond. Sci. Technol. 24, 075003 (2009)

    Article  Google Scholar 

  21. E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range. Sens. Actuators, A 194, 259–268 (2013)

    Article  Google Scholar 

  22. S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, Analysis of temperature dependent current-conduction mechanisms in Au/TiO2/n-4H-SiC (metal/insulator/semiconductor) type Schottky barrier diodes. J. Appl. Phys. 116, 083709 (2014)

    Article  Google Scholar 

  23. F.A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9, 695–707 (1966)

    Article  Google Scholar 

  24. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş. Altındal, Current–transport mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky diodes in the temperature range between 220 K and 380 K. J. Electron. Mater. 47, 6945–6953 (2018)

    Article  Google Scholar 

  25. C. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes. Appl. Phys. A Mater. 123, 560 (2017)

    Article  Google Scholar 

  26. İ. Taşçıoğlu, S.O. Tan, F. Yakuphanoğlu, Ş. Altındal, Effectuality of barrier height inhomogeneity on the current–voltage–temperature characteristics of metal-semiconductor structures with CdZnO interlayer. J. Electron. Mater. 47, 6059–6066 (2018)

    Article  Google Scholar 

  27. S.A. Yerişkin, M. Balbaşı, S. Demirezen, Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures. Indian J. Phys. 91, 421–430 (2017)

    Article  Google Scholar 

  28. S. Chand, J. Kumar, Evidence for the double distribution of barrier heights in Pd2Si/n-Si Schottky diodes from I–V–T measurements. Semicond. Sci. Technol. 11, 1203–1208 (1996)

    Article  Google Scholar 

  29. A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current–voltage–temperature (I–V–T) characteristics. J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018)

    Google Scholar 

  30. Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altındal, Double exponential I–V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016)

    Article  Google Scholar 

  31. L. Zhu, S. Bai, H. Zhang, Y. Ye, W. Gao, Rhenium used as an interlayer between carbon–carbon composites and iridium coating: adhesion and wettability. Surf. Coat. Technol. 235, 68–74 (2013)

    Article  Google Scholar 

  32. H.S. Venugopalan, S.E. Mohney, Thermally stable rhenium Schottky contacts to n-GaN. Appl. Phys. Lett. 73, 1242–1244 (1998)

    Article  Google Scholar 

  33. G.Y. McDaniel, S.T. Fenstermaker, W.V. Lampert, P.H. Holloway, Rhenium ohmic contacts on 6H-SiC. J. Appl. Phys. 96, 5357–5364 (2004)

    Article  Google Scholar 

  34. N. Şimşir, H. Şafak, Ö.F. Yüksel, M. Kuş, Investigation of current–voltage and capacitance–voltage characteristics of Ag/perylene-monoimide/n-GaAs Schottky diode. Curr. Appl. Phys. 12, 1510–1514 (2012)

    Article  Google Scholar 

  35. M. Soylu, M. Gülen, S. Sönmezoğlu, Temperature-dependent model for hole transport mechanism in a poly(1.8-diaminocarbazole)/Si structure. Philos. Mag. 96, 2600–2614 (2016)

    Article  Google Scholar 

  36. M. Saad, A. Kassis, Analysis of illumination-intensity-dependent j–V characteristics of ZnO/CdS/CuGaSe2 single crystal solar cells. Sol. Energy Mater. Sol. Cells 77, 415–422 (2003)

    Article  Google Scholar 

  37. T. Giaddui, L.G. Earwaker, K.S. Forcey, B.J. Aylett, I.S. Harding, A study on the metallisation and stabilisation of porous silicon. Nucl. Instrum. Methods B 113, 201–204 (1996)

    Article  Google Scholar 

  38. J. Thomas, J. Schumann, W. Pitschke, Characterization of rhenium-silicon thin films. Fresenius J. Anal. Chem. 358, 325–328 (1997)

    Article  Google Scholar 

  39. V. Petrovich, M. Haurylau, S. Volchek, Rhenium deposition on a silicon surface at the room temperature for application in microsystems. Sens. Actuators A Phys. 99, 45–48 (2002)

    Article  Google Scholar 

  40. R. Schrebler, T.P. Cury, C. Suarez, E. Munoz, F. Vera, R. Cordova, H. Gomez, J.R. Ramos-Barrado, D. Leinen, E.A. Dalchiele, Study of the electrodeposition of rhenium thin films by electrochemical quartz microbalance and X-ray photoelectron spectroscopy. Thin Solid Films 483, 50–59 (2005)

    Article  Google Scholar 

  41. A.N. Saxena, Forward current-voltage characteristics of Schottky barriers on n-type silicon. Surf. Sci. 13, 151–171 (1969)

    Article  Google Scholar 

  42. C.R. Crowell, V.L. Rideout, Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers. Solid State Electron. 12, 89–105 (1969)

    Article  Google Scholar 

  43. M. Ravinandan, P. Koteswara, V.R. Reddy, Analysis of the current–voltage characteristics of the Pd/Au Schottky structure on n-type GaN in a wide temperature range. Semicond. Sci. Technol. 24, 035004 (2009)

    Article  Google Scholar 

  44. K. Çınar, N. Yıldırım, C. Coşkun, A. Türüt, Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes. J. Appl. Phys. 106, 073717 (2009)

    Article  Google Scholar 

  45. M.H. Al-Dharob, H.E. Lapa, A. Kökce, A.F. Özdemir, D.A. Aldemir, S. Altındal, The investigation of current-conduction mechanisms (CCMs) in Au/(0.07Zn-PVA)/n-4H-SiC (MPS) type Schottky diodes (SDs) by using (I–V–T) measurements. Mater. Sci. Semicond. Proces. 85, 98–105 (2018)

    Article  Google Scholar 

  46. İ. Taşçıoğlu, U. Aydemir, Ş. Altındal, B. Kınacı, S. Özçelik, Analysis of the forward and reverse bias I–V characteristics on Au/(PVA:Zn)/n-Si Schottky barrier diodes in the wide temperature range. J. Appl. Phys. 109, 054502 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mert Yıldırım.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmuş, H., Yıldırım, M. & Altındal, Ş. On the possible conduction mechanisms in Rhenium/n-GaAs Schottky barrier diodes fabricated by pulsed laser deposition in temperature range of 60–400 K. J Mater Sci: Mater Electron 30, 9029–9037 (2019). https://doi.org/10.1007/s10854-019-01233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01233-z

Navigation