Skip to main content

Advertisement

Log in

Synthesis of visible light-driven graphene based ZnFe mixed metal oxide for efficient degradation of tetracycline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetically separable reduced graphene oxide (RGO)-based ZnFe mixed metal oxide (MMO) nanocomposite (MMO/RGO) was prepared via a scalable and low energy-consuming co-precipitation-calcination process. The preparation procedure can be easily carried out at lower temperature in shorter time compared with those reported in literatures. The structural characterization indicates that ZnFe MMO (i.e., ZnO/ZnFe2O4) heterojunctions are homogeneously distributed as particles with a size in the range of 5–30 nm on the surface of RGO. The ZnFe MMO/RGO nanocomposite exhibits superior photocatalytic performance and stability for the degradation of tetracycline (TC) under visible-light illumination. 100% of the TC molecules is removed after visible-light irradiation for 120 min at 25 °C in the presence of ZnFe MMO/RGO. The photodegradation rate constant is 3.4 times that of ZnFe MMO, suggesting that the synergistic effect between ZnFe MMO and RGO improves the photocatalytic degradation performance of the nanocomposites. Neither toxic chemical reductants nor additional solvents were used during the preparation. More importantly, ZnFe MMO/RGO nanocomposite can be easily recycled by applying an external magnet. This work may provide an environment-friendly low-energy consuming method for large-scale production of MMO/RGO photocatalysts toward the degradation of TC. The photocatalytic mechanism of the ZnFe MMO/RGO nanocomposite was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2

Similar content being viewed by others

References

  1. S. Reardon, Nature 509, 141 (2014)

    Article  Google Scholar 

  2. Y. Chen, W. Lu, X. Wang, W. Chen, Appl. Surf. Sci. 453, 110 (2018)

    Article  Google Scholar 

  3. F. Saadati, N. Keramati, M.M. Ghazi, Crit. Rev. Environ. Sci. Technol. 46, 757 (2016)

    Article  Google Scholar 

  4. Y.-J. Wang, D.-A. Jia, R.-J. Sun, H.-W. Zhu, D.-M. Zhou, Environ. Sci. Technol. 42, 3254 (2008)

    Article  Google Scholar 

  5. R. Daghrir, P. Drogui, Environ. Chem. Lett. 11, 209 (2013)

    Article  Google Scholar 

  6. M.E. Lindsey, M. Meyer, E.M. Thurman, Anal. Chem. 73, 4640 (2001)

    Article  Google Scholar 

  7. X.-S. Miao, F. Bishay, M. Chen, C.D. Metcalfe, Environ. Sci. Technol. 38, 3533 (2004)

    Article  Google Scholar 

  8. S. Rodriguez-Mozaz, S. Chamorro, E. Marti, B. Huerta, M. Gros, A. Sànchez-Melsió, C.M. Borrego, D. Barceló, J.L. Balcázar, Water Res. 69, 234 (2015)

    Article  Google Scholar 

  9. C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)

    Article  Google Scholar 

  10. G. Zhao, C. Li, X. Wu, J. Yu, X. Jiang, W. Hu, F. Jiao, Appl. Surf. Sci. 434, 251 (2018)

    Article  Google Scholar 

  11. Y. Liu, J. Kong, J. Yuan, W. Zhao, X. Zhu, C. Sun, J. Xie, Chem. Eng. J. 331, 242 (2018)

    Article  Google Scholar 

  12. J. Zhu, Z. Zhu, H. Zhang, H. Lu, Y. Qiu, L. Zhu, S. Kuppers, J. Colloid Interface Sci. 481, 144 (2016)

    Article  Google Scholar 

  13. Q. Liang, J. Jin, M. Zhang, C. Liu, S. Xu, C. Yao, Z. Li, Appl. Catal. B 218, 545 (2017)

  14. Š. Paušová, J. Krýsa, J. Jirkovský, C. Forano, G. Mailhot, V. Prevot, Appl. Catal. B 170-171, 25 (2015)

  15. J. Liang, Y. Wei, Y. Yao, X. Zheng, J. Shen, G. He, H. Chen, J. Colloid Interface Sci. 540, 237 (2019)

    Article  Google Scholar 

  16. S. Cho, J.W. Jang, S. Hwang, J.S. Lee, S. Kim, Langmuir 28, 17530 (2012)

    Article  Google Scholar 

  17. G. Fan, W. Sun, H. Wang, F. Li, Chem. Eng. J. 174, 467 (2011)

    Article  Google Scholar 

  18. Y.N. Liang, Y. Li, C. Ang, Y. Shen, D. Chi, X. Hu, A.C.S. Appl, Mater. Interface 6, 12406 (2014)

    Article  Google Scholar 

  19. X. Xiang, L. Xie, Z. Li, F. Li, Chem. Eng. J. 221, 222 (2013)

    Article  Google Scholar 

  20. G. Di, Z. Zhu, H. Zhang, J. Zhu, H. Lu, W. Zhang, Y. Qiu, L. Zhu, S. Küppers, Chem. Eng. J. 328, 141 (2017)

    Article  Google Scholar 

  21. S. Yang, P. Wu, M. Chen, Z. Huang, W. Li, N. Zhu, Y. Ji, RSC Adv. 6, 26495 (2016)

    Article  Google Scholar 

  22. J. Ni, J. Xue, J. Shen, G. He, H. Chen, Appl. Surf. Sci. 441, 599 (2018)

    Article  Google Scholar 

  23. G. Di, Z. Zhu, Q. Huang, H. Zhang, J. Zhu, Y. Qiu, D. Yin, J. Zhao, Sci. Total Environ. 650, 1112 (2019)

    Article  Google Scholar 

  24. Y. Zhu, P. Wu, S. Yang, Y. Lu, W. Li, N. Zhu, Z. Dang, Z. Huang, RSC Adv. 6, 37689 (2016)

    Article  Google Scholar 

  25. M. Lan, G. Fan, L. Yang, F. Li, RSC Adv. 5, 5725 (2015)

    Article  Google Scholar 

  26. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)

    Article  Google Scholar 

  27. H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557 (2008)

    Article  Google Scholar 

  28. G. He, H. Chen, J. Zhu, F. Bei, X. Sun, X. Wang, J. Mater. Chem. 21, 14631 (2011)

    Article  Google Scholar 

  29. J. Zhu, Z. Zhu, H. Zhang, H. Lu, W. Zhang, Y. Qiu, L. Zhu, S. Küppers, Appl. Catal. B 225, 550 (2018)

    Article  Google Scholar 

  30. Z. Huang, P. Wu, B. Gong, Y. Fang, N. Zhu, J. Mater. Chem. A 2, 5534 (2014)

    Article  Google Scholar 

  31. J. Liang, Y. Wei, J. Zhang, Y. Yao, G. He, B. Tang, H. Chen, Ind. Eng. Chem. Res. 57, 4311 (2018)

    Article  Google Scholar 

  32. Y. Fu, H. Chen, X. Sun, X. Wang, Appl. Catal. B 111–112, 280 (2012)

    Article  Google Scholar 

  33. J. Ni, J. Xue, L. Xie, J. Shen, G. He, H. Chen, Phys. Chem. Chem. Phys. 20, 414 (2017)

    Article  Google Scholar 

  34. J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, A.C.S. Appl, Mater. Interf. 7, 9630 (2015)

    Article  Google Scholar 

  35. D. Jiang, P. Xiao, L. Shao, D. Li, M. Chen, Ind. Eng. Chem. Res. 56, 8823 (2017)

    Article  Google Scholar 

  36. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  37. Q. Yang, S. Wang, F. Chen, K. Luo, J. Sun, C. Gong, F. Yao, X. Wang, J. Wu, X. Li, D. Wang, G. Zeng, Catal. Commun. 99, 15 (2017)

    Article  Google Scholar 

  38. F. Zhang, Y. Zhang, G. Zhang, Z. Yang, D.D. Dionysiou, A. Zhu, Appl. Catal. B 236, 53 (2018)

    Article  Google Scholar 

  39. Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Appl. Catal. B 226, 360 (2018)

    Article  Google Scholar 

  40. H.N. Tien, V.H. Luan, L.T. Hoa, N.T. Khoa, S.H. Hahn, J.S. Chung, E.W. Shin, S.H. Hur, Chem. Eng. J. 229, 126 (2013)

    Article  Google Scholar 

  41. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423, 1025 (2017)

    Article  Google Scholar 

  42. H. Chen, W. Liu, Z. Qin, Catal. Sci. Technol. 7, 2236 (2017)

    Google Scholar 

  43. E.K. Nyutu, W.C. Conner, S.M. Auerbach, C.-H. Chen, S.L. Suib, J. Phys. Chem. C 112, 1407 (2008)

    Article  Google Scholar 

  44. P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Curr. Appl. Phys. 11, 101 (2011)

    Article  Google Scholar 

  45. G.B.B. Varadwaj, O.A. Oyetade, S. Rana, B.S. Martincigh, S.B. Jonnalagadda, V.O. Nyamori, A.C.S. Appl, Mater. Interface 9, 17290 (2017)

    Article  Google Scholar 

  46. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  47. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, J. Phys. Chem. C 113, 19812 (2009)

    Article  Google Scholar 

  48. M. Kim, C. Lee, J. Jang, Adv. Funct. Mater. 24, 2489 (2014)

    Article  Google Scholar 

  49. S. Wu, X. Shen, G. Zhu, H. Zhou, Z. Ji, K. Chen, A. Yuan, Appl. Catal., B 184, 328 (2016)

  50. S. Dong, X. Ding, T. Guo, X. Yue, X. Han, J. Sun, Chem. Eng. J. 316, 778 (2017)

    Article  Google Scholar 

  51. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Mater. Lett. 238, 159 (2019)

    Article  Google Scholar 

  52. N. Baliarsingh, L. Mohapatra, K. Parida, J. Mater. Chem. A 1, 4236 (2013)

    Article  Google Scholar 

  53. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380 (2010)

    Article  Google Scholar 

  54. Y. Fu, H. Chen, X. Sun, X. Wang, AIChE J. 58, 3298 (2012)

    Article  Google Scholar 

  55. W.-K. Jo, N.C.S. Selvam, Chem. Eng. J. 317, 913 (2017)

    Article  Google Scholar 

  56. L. Xie, J. Ni, B. Tang, G. He, H. Chen, Appl. Surf. Sci. 434, 456 (2018)

    Article  Google Scholar 

  57. Y. Zhu, J. Xue, T. Xu, G. He, H. Chen, J. Mater. Sci.: Mater. Electron. 28, 8519 (2017)

    Google Scholar 

  58. P. Xiao, D. Jiang, L. Ju, J. Jing, M. Chen, Appl. Surf. Sci. 433, 388 (2018)

    Article  Google Scholar 

  59. D. Jiang, B. Wen, Q. Xu, M. Gao, D. Li, M. Chen, J. Alloys Compd. 762, 38 (2018)

    Article  Google Scholar 

  60. Y. Shi, Y. Hu, L. Zhang, Z. Yang, Q. Zhang, H. Cui, X. Zhu, J. Wang, J. Chen, K. Wang, Appl. Clay Sci. 137, 249 (2017)

    Article  Google Scholar 

  61. D. Wang, S. Li, Q. Feng, J. Mater. Sci.: Mater. Electron. 29, 9380 (2018)

    Google Scholar 

  62. Y. Guo, J. Li, Z. Gao, X. Zhu, Y. Liu, Z. Wei, W. Zhao, C. Sun, Appl. Catal. B 192, 57 (2016)

    Article  Google Scholar 

  63. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, J. Hazard. Mater. 136, 85 (2006)

    Article  Google Scholar 

  64. R. Hu, X. Xiao, S. Tu, X. Zuo, J. Nan, Appl. Catal. B 163, 510 (2015)

    Article  Google Scholar 

  65. T. Kanagaraj, S. Thiripuranthagan, Appl. Catal. B 207, 218 (2017)

    Article  Google Scholar 

  66. A. Akyol, M. Bayramoglu, J. Hazard. Mater. 124, 241 (2005)

    Article  Google Scholar 

  67. T. Xu, J. Xue, X. Zhang, G. He, H. Chen, Appl. Surf. Sci. 402, 294 (2017)

    Article  Google Scholar 

  68. Y. Soltanabadi, M. Jourshabani, Z. Shariatinia, Sep. Purif. Technol. 202, 227 (2018)

    Article  Google Scholar 

  69. H. Anwer, J.W. Park, J. Hazard. Mater. 358, 416 (2018)

    Article  Google Scholar 

  70. M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, A.F. Shojaie, M.D. Rafiee, J. Mater. Sci.: Mater. Electron. 27, 11940 (2016)

    Google Scholar 

  71. J. Li, Z. Liu, Z. Zhu, Rsc Adv. 4, 51302 (2014)

    Article  Google Scholar 

  72. F. Wu, X. Li, W. Liu, S. Zhang, Appl. Surf. Sci. 405, 60 (2017)

    Article  Google Scholar 

  73. P. Xiong, Y. Fu, L. Wang, X. Wang, Chem. Eng. J. 195–196, 149 (2012)

    Article  Google Scholar 

  74. S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Appl. Energy 87, 2230 (2010)

    Article  Google Scholar 

  75. X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 323 (2008)

    Article  Google Scholar 

  76. X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M.-T.F. Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P.M. Ajayan, Adv. Energy Mater. 7, 1700025 (2017)

    Article  Google Scholar 

  77. F. Dong, Z. Wang, Y. Li, W.K. Ho, S.C. Lee, Environ. Sci. Technol. 48, 10345 (2014)

    Article  Google Scholar 

  78. F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, Environ. Sci. Technol. 49, 12432 (2015)

    Article  Google Scholar 

  79. Y. Huang, D. Zhu, Q. Zhang, Y. Zhang, J-j Cao, Z. Shen, W. Ho, S.C. Lee, Appl. Catal. B 234, 70 (2018)

    Article  Google Scholar 

  80. Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.-K. Ho, Nanoscale 7, 2471 (2015)

    Article  Google Scholar 

  81. T.B. Nguyen, C.P. Huang, R.-A. Doong, Sci. Total Environ. 646, 745 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from National Natural Science Foundation of China (Grant Nos. 51572036, 51472035), Changzhou Key Laboratory of Graphene-Based Materials for Environment and Safety (Grant Nos. CM20153006, CE20185043), and PAPD of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyu He or Haiqun Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Liang, J., Yao, Y. et al. Synthesis of visible light-driven graphene based ZnFe mixed metal oxide for efficient degradation of tetracycline. J Mater Sci: Mater Electron 30, 8931–8943 (2019). https://doi.org/10.1007/s10854-019-01221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01221-3

Navigation