Skip to main content
Log in

Influence of metal assisted chemical etching time period on mesoporous structure in as-cut upgraded metallurgical grade silicon for solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, upgraded metallurgical grade silicon (UMG-Si) wafer was used to fabricate mesoporous nanostructures, as an effective antireflection layer for solar photovoltaic cells. The length of the vertical Si nanostructure (SiNS) arrays was altered by varying the etching time period during metal assisted chemical etching process, using a silver catalyst. The optical, structural, morphological changes and the antireflection properties of Si nanostructures formed on UMG-Siwafer were analysed. SEM and photoluminescence studies indicate that Si nanocrystals are formed on the surface and along the vertical nanowires. The pore size depends on the Ag nanoparticle size distribution. All the samples demonstrated a luminescence band centred around 2.2 eV. From the optical results, samples etched for 45 min show strong absorption in the visible spectrum. The minimum and maximum surface reflectance in the visible region was observed for 15 min and 60 min etched SiNS. Based on the observed results, 15 min etched Si with a uniform porous structure has minimum reflectance across the entire silicon UV–Vis absorption spectrum, making it worth further investigation as a candidate for use as an antireflection layer in silicon based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.Q. Peng, X. Wang, L. Li, Y. Hu, S.T. Lee, Nano Today 8, 75–97 (2013)

    Article  Google Scholar 

  2. K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Adv. Funct. Mater. 16, 387–394 (2006)

    Article  Google Scholar 

  3. S. Kajari-Schröder, J. Käsewieter, J. Hensen, R. Brendel, Energy Procedia 38, 919–925 (2013)

    Article  Google Scholar 

  4. H. Han, Z. Huang, W. Lee, Nano Today 9, 271–304 (2014)

    Article  Google Scholar 

  5. Z.P. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285–308 (2011)

    Article  Google Scholar 

  6. D.M. Bagnall, M. Boreland, Energy Policy 36, 4390–4396 (2008)

    Article  Google Scholar 

  7. S. Ming-Wang, Y. Hui, Z. Ming-Liang, W. Ning-Bew, S. Yue-Yue, L. Shuit-Tong, Appl. Phys. Lett. 87 183106 (2005)

    Article  Google Scholar 

  8. J.-K. Kim, T. Gessmann, E.F. Schubert, J.-Q. Xi, H. Luo, J. Cho, C. Sone, Y. Park, Appl. Phys. Lett. 88, 013501 (2006)

    Article  Google Scholar 

  9. H. Kikuta, H. Toyota, W. Yu, Opt. Rev. 10, 63–73 (2003)

    Article  Google Scholar 

  10. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, J. Spatz, Laser Photon. Rev. 6, 641–659 (2012)

    Article  Google Scholar 

  11. Y.-M. Song, H.-J. Choi, J.-S. Yu, Y.-T. Lee, Opt. Express 18, 13063–13071 (2010)

    Article  Google Scholar 

  12. S.H. Zhong, Z.G. Huang, X.X. Lin, Y. Zeng, Y.C. Ma, W.Z. Shen. Adv. Mater. 27, 555–561 (2015)

    Article  Google Scholar 

  13. T. Zhang, J. Gao, L.J. Fu, L.C. Yang, Y.P. Wu, H.Q. Wu, J. Mater. Chem. 17, 1321 (2007)

    Article  Google Scholar 

  14. S. Hoffmann, J. Bauer, C. Ronning, Th Stelzner, J. Michler, C. Ballif, V. Sivakov, S.H. Christiansen, Nano Lett. 9, 1341–1344 (2009)

    Article  Google Scholar 

  15. J. Oh, Y. Hao-Chih, H.M. Branz, Nat. Nanotechnol. 7, 743–748 (2012)

    Article  Google Scholar 

  16. H. Savin, P. Repo, G. von Gastrow, P. Ortega, E. Calle, M. Garín, R. Alcubilla, Nat. Nanotechnol. 10, 624–628 (2015)

    Article  Google Scholar 

  17. C. Modanese, H.S. Laine, T.P. Pasanen, H. Savin, J.M. Pearce, Energies 11(9), 2337 (2018)

    Article  Google Scholar 

  18. K. Chena, J. Zha, F. Hu, X. Ye, S. Zou, V. Vähänissi, J.M. Pearce, H. Savin, X. Su, Sol. Energy Mater. Sol. Cells 191, 1–8 (2019)

    Article  Google Scholar 

  19. H.-D. Um, N. Kim, K. Lee, I. Hwang, J.H. Seo, Y.J. Yu, P. Duane, M. Wober, K. Seo, Sci. Rep. 5, 11277 (2015)

    Article  Google Scholar 

  20. V.T. Pham, M. Dutta, H.T. Bui, N. Fukata, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 045014 (2014)

    Google Scholar 

  21. G. Dong, Y. Zhou, H. Zhang, F. Liu, G. Li, M. Zhu, RSC Adv. 7, 45101–45106 (2017)

    Article  Google Scholar 

  22. J. Safarian, G. Tranell, M. Tangstad, Energy Procedia 20, 88–97 (2012)

    Article  Google Scholar 

  23. P. Preis, F. Buchholz, P. Diaz-Perez, J.G.-R.C. Peter, S. Schmitt, J. Theobald, K. Peter, A.-K. Søiland, Energy Procedia 55, 589–595 (2014)

    Article  Google Scholar 

  24. J. Thorstensen, J. Gjessing, E.S. Marstein, S.E. Foss, IEEE J. Photovolt. 3, 709–715 (2013)

    Article  Google Scholar 

  25. R. Venkatesan, M. Arivalagan, V. Venkatachalapathy, J.M. Pearce, J. Mayandi, Mater. Lett. 221, 206–210 (2018)

    Article  Google Scholar 

  26. X. Li, Y. Xiao, J.H. Bang, D. Lausch, S. Meyer, M. Paul-Tiberiu, J. Jin-Young, S.L. Schweizer, J.H. Le, R.B. Wehrspohn, Adv. Mater. 25, 3187–3191 (2013)

    Article  Google Scholar 

  27. G.-R. Lin, Y.-H. Lin, Y.-H. Pai, F.-S. Meng, Opt. Express 19, 597 (2011)

    Article  Google Scholar 

  28. K.A. Salman, K. Omar, Z. Hassan, Superlattices Microstruct. 50, 647–658 (2011)

    Article  Google Scholar 

  29. N. Naderi, M.R. Hashim, Appl. Surf. Sci. 258, 6436–6440 (2012)

    Article  Google Scholar 

  30. P. Sangeetha, V. Sasirekha, V. Ragavendran, J. Mayandi, J. Pearce, J.H. Selj, V. Ramakrishnan, Z. Phys. Chem. 231, 9, 1585–1598 (2016)

    Google Scholar 

  31. R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Nanotechnology 25, 045703 (2014)

    Article  Google Scholar 

  32. L.T. Canham, Phys. Status Solidi 190, 9 (1995)

    Article  Google Scholar 

  33. C. Delerue, G. Allan, M. Lannoo, Phys. Rev. B 48, 11024–11036 (1993)

    Article  Google Scholar 

  34. M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82, 197–200 (1999)

    Article  Google Scholar 

  35. Q. Yu, H. He, L. Gana, Z. Ye, RSC Adv. 5, 80526–80529 (2015)

    Article  Google Scholar 

  36. W.D.A.M. de Boer, D. Timmerman, K. Dohnalova, I.N. Yassievich, H. Zhang, W.J. Buma, T. Gregorkiewicz, Nat. Nanotechnology 5, 878–884 (2010)

    Article  Google Scholar 

  37. P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  38. E. Rauwel, A. Galeckas, P. Rauwel, H. Fjellvåg, Adv. Funct. Mater. 22, 1174–1179 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the support from DST-SERB/F/1829/2012–2013, and DST—PURSE programme MK University, for providing the Raman and SEM facilities. JM thanks Dr. K. Smagul for providing Si wafers. Author VV acknowledges P2V (Grant No. 255082) project funded by the Research council of Norway (NFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyanthinath Mayandi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesan, R., Mayandi, J., Pearce, J.M. et al. Influence of metal assisted chemical etching time period on mesoporous structure in as-cut upgraded metallurgical grade silicon for solar cell application. J Mater Sci: Mater Electron 30, 8676–8685 (2019). https://doi.org/10.1007/s10854-019-01191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01191-6

Navigation