Skip to main content
Log in

Low dielectric constant and high toughness epoxy resin based on hyperbranched polyester grafted by flexible chain modified

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new kind of hyperbranched polymers was designed and prepared with flexible chain blocking in this paper. Not only the flexible chain blocking hyperbranched polyester could be used for a toughening agent about epoxy resin and the impact strength reached 29.8 kJ/mm2, but also reduces greatly the dielectric constant and the dielectric loss of the epoxy resin, and the lowest dielectric constant was 2.73 (107 Hz), as well the lowest dielectric loss was 0.002 (107 Hz), compared with the epoxy resin system modified with the traditional hyperbranched polyester. The results indicated that the flexible chain blocking hyperbranched polyester had offered free volume structure and flexible chain with epoxy resins chain formed the interpenetrating polymer networks which made transformation accomplish. The resins which had better toughness, low Dk, low dielectric loss and excellent insulation performance could be applied in various research and development fields, such as high frequency and low dielectric copper clad laminate and translucent structural adhesives, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.G. Schmidt, J.P. Bell, Adv. Polym. Sci. 75, 33–71 (1986)

    Article  Google Scholar 

  2. Y. Cheng, D. Chen, Polym. Int. 54, 495–499 (2005)

    Article  Google Scholar 

  3. K. Chino, K. Suga, M.J. Ikawa, Appl. Polym. Sci. 82, 2953–2957 (2001)

    Article  Google Scholar 

  4. D. Zhang, E. Liang, T. Li, RSC Adv 3, 9522–9529 (2013)

    Article  Google Scholar 

  5. D. Zhang, D. Jia, Z. Zhou, Res. 17, 289–295 (2009)

    Google Scholar 

  6. R. Thomas, Y. Ding, Y. He, Polym. 49, 278–2940 (2008)

    Article  Google Scholar 

  7. M.G. Sari, B. Ramezanzadeh, Shahbazi. Corros. Sci. 92, 162–172 (2015)

    Article  Google Scholar 

  8. M. Flores, M. Morell, X. Fernández-Francos, Eur. Polym. J. 49, 1610–1620 (2013)

    Article  Google Scholar 

  9. M.V. Pergal, J.V. Džunuzović, R. Poręba, Prog. Org. Coat. 76, 743–756 (2013)

    Article  Google Scholar 

  10. D. FOIX, X. RAMIS, F. Ferrando, Polym. Int. 61, 727–734 (2012)

    Article  Google Scholar 

  11. H. Li, G. Sivasankarapillai, A.G. Mcdonald, Ind. Crops Prod. 67, 143–154 (2015)

    Article  Google Scholar 

  12. B.L. Murillo, E.A. Valleejo, P.P. Lopez, Prog. Org. Coat. 69, 235–240 (2010)

    Article  Google Scholar 

  13. D.M. Dhevi, A.A. Prabu, K.J. Kim, Polym. Bull. 73, 2867–2888 (2016)

    Article  Google Scholar 

  14. Q. Yao, C. Li, H. Huang, J. Mol. Struct. 1143, 371–377 (2017)

    Article  Google Scholar 

  15. A.B. Cook, R. Barbey, J.A. Burns, Macromol. 49(2016)

  16. X. Cao, Y. Shi, W. Gan, Macromolecule, 49, 5342–5349 (2016)

    Article  Google Scholar 

  17. D. Zhang, Y. Wang, Z.J. Xu, Appl. Polym. Sci. 133, 42932 (2016)

    Google Scholar 

  18. E.A. Murillo, P.P. Vallejo, B.L. López, Org. Coat. 69, 235–240 (2010)

    Article  Google Scholar 

  19. Z.A. Steelman, A.C. Weems, A. Traverso, Phys. Lett. 111, 241904 (2017)

    Google Scholar 

  20. R.R. Baglay, C.B. Roth, J. Chem. Phys. 146, 203–307 (2017)

    Article  Google Scholar 

  21. T. Ping, Y. Zhou, Y. He. Prog, Org. Coat. 97, 74–81 (2016)

    Article  Google Scholar 

  22. X.L. Bian, G. Wang, H.C. Chen, Acta Mater 106, 66–77 (2016)

    Article  Google Scholar 

  23. J. Xi, Z.J. Yu, Appl. Polym. Sci. 135 45672 (2018)

    Article  Google Scholar 

  24. D. Ratna, G.P. Simon, J. Appl. Polym. Sci. 117, 557–564 (2010)

    Google Scholar 

  25. D. Zhang, D.J. Jia, Appl. Polym. Sci. 101, 2504–2511 (2010)

    Article  Google Scholar 

  26. Q. Wang, L.J. Zhu, Polym. Sci. Part B 49, 1421–1429 (2011)

    Article  Google Scholar 

  27. B. Hilker, K.B. Fields, A. Stern, Polym. 51, 4790–4805 (2010)

    Article  Google Scholar 

  28. U.Q. Ly, M. Pham, M.J. Marks, J. Comput. Chem. 38, 1093 (2017)

    Article  Google Scholar 

  29. Y. Celikbag, S. Meadows, M. Barde, Ind. Eng. Chem. Res. 56, 9389–9400 (2017)

    Article  Google Scholar 

  30. A. Mohan, M. Malathi, S.S. Shaikh, J. Solution Chem. 45, 221–234 (2016)

    Article  Google Scholar 

  31. X.M. Qian, D.Q. Qin, J.Y. Wang, J. Appl. Polym. Sci. 75, 721–727 (2015)

    Article  Google Scholar 

  32. A. Ameli, M. Nofar, C.B. Park, Carbon 71, 206–217 (2014)

    Article  Google Scholar 

  33. D. Foix, Y. Yu, A. Serra, Eur. Polym. J. 45, 1454–1466 (2009)

    Article  Google Scholar 

  34. J.Y. Li, P. Chen, Z.M. Ma, Polym. Mater. Sci. Eng. 25, 141–143 (2009)

    Article  Google Scholar 

  35. K. Wang, W. Liu, C.J. Zheng, J. Mater. Chem. C. 5, 4797–4083 (2017)

    Article  Google Scholar 

  36. F. Zhao, H. Guo, Z. Zhang, J. Mater. Chem. B. 5, 5189–5195 (2017)

    Article  Google Scholar 

  37. T.T. Teemu, H. Myllymäki, J.J.J.J. Nonappa, H. Yang. Soft Matter 12, 7159–7165 (2016)

    Article  Google Scholar 

  38. L. Cai, Y. Lu, Polym. Int. 58, 640–647 (2010)

    Article  Google Scholar 

  39. R. Aradhana, S. Mohanty, S.K. Nayak, Polym. 141, 109–123 (2018)

    Article  Google Scholar 

  40. D. Ratna, R. Varley, R.K.S. Raman, J. Mater. Sci. 38, 147–154 (2003)

    Article  Google Scholar 

  41. P. Saadati, H. Baharvand, A. Rahimi, Iran. Polym. J. 14, 637–646.(2005) (2005)

    Google Scholar 

  42. A. Mulderig, G. Beaucage, K. Vogtt, J. Aerosol Sci. 109, 28–37 (2017)

    Article  Google Scholar 

  43. D. Errandonea, A. Muñoz, P. Rodríguezhernández, Inorg. Chem. 55, 4958–4969 (2016)

    Article  Google Scholar 

  44. Chen, Nan, Xuming Xie. Acta Polym. Sin 5, 635–642 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhu Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, X., Weng, L. et al. Low dielectric constant and high toughness epoxy resin based on hyperbranched polyester grafted by flexible chain modified. J Mater Sci: Mater Electron 30, 5936–5946 (2019). https://doi.org/10.1007/s10854-019-00893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00893-1

Navigation