Skip to main content

Advertisement

Log in

Enhanced energy storage activity of NiMoO4 modified by graphitic carbon nitride

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NiMoO4 sheets were grown on graphitic carbon nitride (g-C3N4) using a very simple chemical precipitation method. The prepared g-C3N4/NiMoO4 can be used as the electrode material of supercapacitors and exhibit a high specific capacitance of 1275 F g−1 at 0.25 A g−1 owing to the interconnected structure and presence of N by the incorporation of g-C3N4. In addition, the g-C3N4/NiMoO4//rGO hybrid supercapacitor was assembled by employing g-C3N4/NiMoO4 and rGO as positive and negative electrode respectively. The assembled hybrid device can exhibit good electrochemical performances, such as the specific capacitance of 146 F g−1, energy density of 90 Wh kg−1 and accepted cycle stability with 70% capacitance retention after 4000 continuous cycles. These results powerfully demonstrate that the prepared g-C3N4/NiMoO4 can be applied as a potential candidate in the electrode material of supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28 (2010)

    Article  Google Scholar 

  2. A. Hossain, P. Bandyopadhyay, P.S. Guin, S. Roy, Recent developed different structural nanomaterials and their performance for supercapacitor application. Appl. Mater. Today 9, 300 (2017)

    Article  Google Scholar 

  3. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008)

    Article  Google Scholar 

  4. G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Soc. Rev. 41, 797 (2012)

    Article  Google Scholar 

  5. L. Li, K.H. Seng, Z.X. Chen, H.K. Liu, I.P. Nevirkovets, Z.P. Guo, Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim. Acta 87, 801 (2013)

    Article  Google Scholar 

  6. J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651 (2008)

    Article  Google Scholar 

  7. R. Nandhini, P.A. Mini, B. Avinash, S.V. Nair, K.R.V. Subramanian, Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling. Mater. Lett. 87, 165 (2012)

    Article  Google Scholar 

  8. Y. Liu, H. Pang, J. Guo, W. Wang, Z. Yan, L. Ma, Y. Ma, G. Li, J. Chen, J. Zhang, H. Zheng, Hydrated cobalt nickel molybdate nanorods as effectively supercapacitor electrode materials. Int. J. Electrochem. Sci. 8, 2945 (2013)

    Google Scholar 

  9. D. Guo, Y.Z. Luo, X.Z. Yu, Q.H. Li, T.H. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174 (2014)

    Article  Google Scholar 

  10. Z.X. Yin, S. Zhang, Y.J. Chen, P. Gao, C.L. Zhu, P.P. Yang, L.H. Qi, Hierarchical nanosheet based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater. Chem. A 3, 739 (2015)

    Article  Google Scholar 

  11. K. Xiao, L. Xia, G. Liu, S. Wang, L.X. Ding, H. Wang, Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater. Chem. A 3, 6128 (2015)

    Article  Google Scholar 

  12. M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater. Lett. 94, 197 (2013)

    Article  Google Scholar 

  13. L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2, 381 (2011)

    Article  Google Scholar 

  14. H.Z. Wan, J.J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H.C. Chen, Y.J. Ruan, Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters or supercapacitors. Mater. Lett. 108, 164 (2013)

    Article  Google Scholar 

  15. Z. Zhang, Y.D. Liu, Z.Y. Huang, L. Ren, X. Qi, X.L. Wei, J.X. Zhong, Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys. Chem. 17, 20795 (2015)

    Google Scholar 

  16. W. Hong, J.Q. Wang, P.W. Gong, J.F. Sun, L.Y. Niu, Z.G. Yang, Z.F. Wang, S.R. Yang, Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application. J Power Sources 270, 516 (2014)

    Article  Google Scholar 

  17. B. Wang, S. Li, X. Wu, W. Tian, J. Liu, M. Yu, Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage. J Mater. Chem. A 3, 13691 (2015)

    Article  Google Scholar 

  18. P.R. Jothi, S. Kannan, G. Velayutham, Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods. J Power. Sources 277, 350 (2015)

    Article  Google Scholar 

  19. X.Z. Liu, K. Zhang, B.L. Yang, W.L. Song, Q. Liu, F. Jia, S.Y. Qin, W.J. Chen, Z.X. Zhang, J. Li, Three-dimensional graphene skeletons supported nickel molybdate nanowire composite as novel ultralight electrode for supercapacitors. Mater. Lett. 164, 401 (2016)

    Article  Google Scholar 

  20. S. Patnaik, D.P. Sahoo, K. Parida, An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew. Sust. Energ. Rev. 82, 1297 (2018)

    Article  Google Scholar 

  21. T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53, 1 (2014)

    Article  Google Scholar 

  22. Y. Hang, C.F. Zhang, X.M. Luo, Y.S. Xie, S. Xin, Y.T. Li, D.W. Zhang, J.B. Goodenough, α–MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries. J Power Sources 392, 15 (2018)

    Article  Google Scholar 

  23. B. Guan, Q.Y. Shan, H. Chen, D.F. Xue, K.F. Chen, Y.X. Zhang, Morphology dependent supercapacitance of nanostructured NiCo2O4 on graphitic carbon nitride. Electrochim. Acta 200, 239 (2016)

    Article  Google Scholar 

  24. X.D. Li, Y. Feng, M.C. Li, W. Li, H. Wei, D.D. Song, Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv. Funct. Mater. 25, 6858 (2015)

    Article  Google Scholar 

  25. Y.R. Li, K.X. Sheng, W.J. Yuan, G.Q. Shi, A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem. Commun. 49, 291 (2013)

    Article  Google Scholar 

  26. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  27. Z.Q. Zhang, F.X. Bao, Y.N. Zhang, L.K. Feng, Y. Ji, H.D. Zhang, Q.S. Sun, S.H. Feng, X.D. Zhao, X.L. Liu, Formation of hierarchical CoMoO4@MnO2 core-shell nanosheet arrays on nickel foam with markedly enhanced pseudocapacitive properties. J. Power Sources 296, 162 (2015)

    Article  Google Scholar 

  28. X.Y. Xu, X.J. Zhang, Y. Zhao, Y.Q. Hu, An efcient hybrid supercapacitor based on battery-type MnS/reduced graphene oxide and capacitor-type biomass derived activated carbon. J. Mater. Sci. Mater. Electron. 29, 8410 (2018)

    Article  Google Scholar 

  29. Y. Jiao, J. Pei, C.S. Yan, D.H. Chen, Y.Y. Hu, G. Chen, Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices. J Mater. Chem. A 4, 13344 (2016)

    Article  Google Scholar 

  30. S. Shi, M.A. Gondal, S.G. Rashid, Q. Qi, A.A. Al-Saadi, Z.H. Yamani, Y.H. Sui, Q.Y. Xu, K. Shen, Synthesis of g-C3N4/BiOClxBr1–x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloid Sur. A 461, 202 (2014)

    Article  Google Scholar 

  31. J. Xu, G.X. Wang, J.J. Fan, B.S. Liu, S.W. Cao, J.G. Yu, g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. J. Power Sources 274, 77 (2015)

    Article  Google Scholar 

  32. T.Y. Jeon, S.K. Kim, N. Pinna, A. Sharma, J. Park, S.Y. Lee, H.C. Lee, S.W. Kang, H.K. Lee, H.H. Lee, Selective dissolution of surface nickel close to platinum in PtNi nanocatalyst toward oxygen reduction reaction. Chem. Mater. 28, 1879 (2016)

    Article  Google Scholar 

  33. K. Dai, L.H. Lu, C.H. Liang, Q. Liu, G.P. Zhu, Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl. Catal. B-Environ. 156, 331 (2014)

    Article  Google Scholar 

  34. D. Klissurski, M. Mancheva, R. Iordanova, G. Tyuliev, B. Kunev, Mechanochemical synthesis of nanocrystalline nickel molybdates. J. Alloy. Compd. 422, 53 (2006)

    Article  Google Scholar 

  35. K. Seevakana, A. Manikandanb, P. Devendranc, A. Shameemc, T. Alagesan, Microwave combustion synthesis, magneto-optical and electrochemical properties of NiMoO4 nanoparticles for supercapacitor application. Ceram. Int. 44, 13879 (2018)

    Article  Google Scholar 

  36. T. Werninghaus, D.R.T. Zahn, E.G. Wang, Y. Chen, Micro-Raman spectroscopy investigation of C3N4 crystals deposited on nickel substrates. Diam. Relat. Mater. 7, 52 (1998)

    Article  Google Scholar 

  37. F.L. Freire Jr., M.M. Lacerda, G. Mariotto, Raman spectroscopy of annealed carbon nitride films deposited by RF-magnetron sputtering. Diam. Relat. Mater. 7, 412 (1998)

    Article  Google Scholar 

  38. M. Tahir, C.B. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, I. Aslam, Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 6, 1258 (2014)

    Article  Google Scholar 

  39. X.Y. Xu, H.L. Zhao, J.K. Zhou, R.N. Xue, J.P. Gao, NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage. J. Power Sources 329, 238 (2016)

    Article  Google Scholar 

  40. X.Y. Xu, F.L. Xia, L. Zhang, J.P. Gao, Hydrothermal preparation of MnMoO4/reduced graphene oxide hybrid and its application in energy storage. Sci. Adv. Mater. 7, 423 (2015)

    Article  Google Scholar 

  41. A. Ajay, A. Paravannoor, J. Joseph, V. Amruthalakshmi, S.S. Anoop, S.V. Nair, A. Balakrishnan, 2D amorphous frameworks of NiMoO4 for supercapacitors: definingthe role of surface and bulk controlled diffusion processes. Appl. Surf. Sci. 326, 39 (2015)

    Article  Google Scholar 

  42. C.S. Wang, Y. Xi, C.G. Hu, S.G. Dai, M.J. Wang, L. Cheng, W.N. Xu, G. Wang, W.L. Li, β-NiMoO4 nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitor. RSC Adv. 5, 107098 (2015)

    Article  Google Scholar 

  43. Y. Zhao, L. Xu, S.Q. Huang, J. Bao, J.X. Qiu, J.B. Lian, L. Xu, Y.P. Huang, Y.G. Xu, H.M. Li, Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors. J. Alloy. Compd. 702, 178 (2017)

    Article  Google Scholar 

  44. Y. Ma, C. Ma, J. Sheng, H.X. Zhang, R.R. Wang, Z.Y. Xie, J.L. Shi, Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors. J Colloid Interf. Sci. 461, 96 (2016)

    Article  Google Scholar 

  45. C. Guan, J.P. Liu, C.W. Cheng, H.X. Li, X.L. Li, W.W. Zhou, H. Zhang, H.J. Fan, Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ. Sci. 4, 4496 (2011)

    Article  Google Scholar 

  46. B. Senthilkumar, D. Meyrick, Y.S. Lee, R.K. Selvan, Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4·xH2O composites for asymmetric supercapacitors. RSC Adv. 3, 16542 (2013)

    Article  Google Scholar 

  47. S. Vikrant, G. Shubhra, S.R. Kishore, S. Gurmeet, Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage. Nanoscale 7, 20642 (2015)

    Article  Google Scholar 

  48. A. Shanmugavani, R.K. Selvan, Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Eletrochim. Acta 189, 283 (2016)

    Article  Google Scholar 

  49. X.Y. Xu, Y.H. Song, R.N. Xue, J.K. Zhou, J.P. Gao, F.B. Xing, Amorphous CoMoS4 for a valuable energy storage material candidate. Chem. Eng. J. 301, 266 (2016)

    Article  Google Scholar 

  50. C. Qing, Y.N. Liu, X.D. Sun, X.X. O.Y, H. Wang, D.M. Sun, B.X. Wang, Q. Zhou, L.F. Xu, Y.W. Tang, Controlled growth of NiMoO4·H2O nanoflake and nanowire arrays on Ni foam for superior performance of asymmetric supercapacitor. RSC Adv. 6, 67785 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basic Research Programs of HeBei province (Grant No. 18964401D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjing Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Liu, Q., Wei, T. et al. Enhanced energy storage activity of NiMoO4 modified by graphitic carbon nitride. J Mater Sci: Mater Electron 30, 5109–5119 (2019). https://doi.org/10.1007/s10854-019-00809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00809-z

Navigation